BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31279736)

  • 1. Kinetics Study of Cocrystal Formation Between Indomethacin and Saccharin Using High-Shear Granulation With In Situ Raman Spectroscopy.
    Tanaka R; Hattori Y; Ashizawa K; Otsuka M
    J Pharm Sci; 2019 Oct; 108(10):3201-3208. PubMed ID: 31279736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Indomethacin-Saccharin Cocrystals during Wet Granulation: Role of Polymeric Excipients.
    Tanaka R; Duggirala NK; Hattori Y; Otsuka M; Suryanarayanan R
    Mol Pharm; 2020 Jan; 17(1):274-283. PubMed ID: 31756100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization.
    Basavoju S; Boström D; Velaga SP
    Pharm Res; 2008 Mar; 25(3):530-41. PubMed ID: 17703346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
    Padrela L; Rodrigues MA; Velaga SP; Matos HA; de Azevedo EG
    Eur J Pharm Sci; 2009 Aug; 38(1):9-17. PubMed ID: 19477273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process.
    Zhang GC; Lin HL; Lin SY
    J Pharm Biomed Anal; 2012 Jul; 66():162-9. PubMed ID: 22497855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-dependent solubility of indomethacin-saccharin and carbamazepine-saccharin cocrystals in aqueous media.
    Alhalaweh A; Roy L; Rodríguez-Hornedo N; Velaga SP
    Mol Pharm; 2012 Sep; 9(9):2605-12. PubMed ID: 22867056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-shear granulation as a manufacturing method for cocrystal granules.
    Rehder S; Christensen NP; Rantanen J; Rades T; Leopold CS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1019-30. PubMed ID: 23685353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of indomethacin-saccharin (IMC-SAC) co-crystals prepared by an anti-solvent crystallization process.
    Chun NH; Wang IC; Lee MJ; Jung YT; Lee S; Kim WS; Choi GJ
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):854-61. PubMed ID: 23454054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.
    Allesø M; Velaga S; Alhalaweh A; Cornett C; Rasmussen MA; van den Berg F; de Diego HL; Rantanen J
    Anal Chem; 2008 Oct; 80(20):7755-64. PubMed ID: 18798651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals.
    Emami S; Siahi-Shadbad M; Barzegar-Jalali M; Adibkia K
    Drug Dev Ind Pharm; 2018 Jun; 44(6):1034-1047. PubMed ID: 29347850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and kinetic investigation on the crucial factors affecting adefovir dipivoxil-saccharin cocrystallization.
    Ma K; Zhang Y; Kan H; Cheng L; Luo L; Su Q; Gao J; Gao Y; Zhang J
    Pharm Res; 2014 Jul; 31(7):1766-78. PubMed ID: 24522813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction crystallization of pharmaceutical molecular complexes.
    Rodríguez-Hornedo N; Nehm SJ; Seefeldt KF; Pagan-Torres Y; Falkiewicz CJ
    Mol Pharm; 2006; 3(3):362-7. PubMed ID: 16749868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies.
    Seefeldt K; Miller J; Alvarez-Núñez F; Rodríguez-Hornedo N
    J Pharm Sci; 2007 May; 96(5):1147-58. PubMed ID: 17455346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymorphic Transformation of Indomethacin during Hot Melt Extrusion Granulation: Process and Dissolution Control.
    Xu T; Nahar K; Dave R; Bates S; Morris K
    Pharm Res; 2018 May; 35(7):140. PubMed ID: 29748722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Cocrystallization of Dapsone and Caffeine during Fluidized Bed Granulation Processing.
    Todaro V; Worku ZA; Cabral LM; Healy AM
    AAPS PharmSciTech; 2019 Jan; 20(1):28. PubMed ID: 30603811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy.
    Reddy JP; Jones JW; Wray PS; Dennis AB; Brown J; Timmins P
    Int J Pharm; 2018 Apr; 541(1-2):253-260. PubMed ID: 29481947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images.
    Ueda H; Ida Y; Kadota K; Tozuka Y
    Int J Pharm; 2014 Feb; 462(1-2):115-22. PubMed ID: 24368105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Better understanding of dissolution behaviour of amorphous drugs by in situ solid-state analysis using Raman spectroscopy.
    Savolainen M; Kogermann K; Heinz A; Aaltonen J; Peltonen L; Strachan C; Yliruusi J
    Eur J Pharm Biopharm; 2009 Jan; 71(1):71-9. PubMed ID: 18590816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing Pharmaceutical Mixtures during Milling: The Potency of Low-Frequency Raman Spectroscopy in Identifying Disorder.
    Walker G; Römann P; Poller B; Löbmann K; Grohganz H; Rooney JS; Huff GS; Smith GPS; Rades T; Gordon KC; Strachan CJ; Fraser-Miller SJ
    Mol Pharm; 2017 Dec; 14(12):4675-4684. PubMed ID: 29091447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cocrystal Solubility Advantage Diagrams as a Means to Control Dissolution, Supersaturation, and Precipitation.
    Huang Y; Kuminek G; Roy L; Cavanagh KL; Yin Q; Rodríguez-Hornedo N
    Mol Pharm; 2019 Sep; 16(9):3887-3895. PubMed ID: 31318567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.