BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31279805)

  • 1. Assessment and modeling of microalgae growth considering the effects OF CO
    Almomani FA
    J Environ Manage; 2019 Oct; 247():738-748. PubMed ID: 31279805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of CO
    Almomani F; Al Ketife A; Judd S; Shurair M; Bhosale RR; Znad H; Tawalbeh M
    Sci Total Environ; 2019 Apr; 662():662-671. PubMed ID: 30703724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic modeling of microalgae growth and CO
    Almomani F
    Sci Total Environ; 2020 Jun; 720():137594. PubMed ID: 32143050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ biological CO
    Razzak SA
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):93-105. PubMed ID: 30259109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production.
    Yadav G; Dash SK; Sen R
    Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.
    Chang HX; Huang Y; Fu Q; Liao Q; Zhu X
    Bioresour Technol; 2016 Apr; 206():231-238. PubMed ID: 26866758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO
    Mousavi S; Najafpour GD; Mohammadi M; Seifi MH
    Bioprocess Biosyst Eng; 2018 Apr; 41(4):519-530. PubMed ID: 29299676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon dioxide (CO
    Kassim MA; Meng TK
    Sci Total Environ; 2017 Apr; 584-585():1121-1129. PubMed ID: 28169025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon biofixation and lipid composition of an acidophilic microalga cultivated on treated wastewater supplied with different CO
    Neves FF; Hoinaski L; Rörig LR; Derner RB; de Melo Lisboa H
    Environ Technol; 2019 Nov; 40(25):3308-3317. PubMed ID: 29708478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of carbon dioxide sequestration by Spongiochloris sp microalgae during petroleum wastewater treatment in airlift bioreactor.
    Abid A; Saidane F; Hamdi M
    Bioresour Technol; 2017 Jun; 234():297-302. PubMed ID: 28340433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of disturbance modes and carbon sources on the physiological traits and nutrient removal performance of microalgae (S. obliquus) for treating low C/N ratio wastewater.
    Zhao X; Lu S; Guo X; Wang R; Li M; Fan C; Wu H
    Chemosphere; 2024 Jan; 347():140672. PubMed ID: 37963498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorella vulgaris cultivation in simulated wastewater for the biomass production, nutrients removal and CO
    Kong W; Kong J; Ma J; Lyu H; Feng S; Wang Z; Yuan P; Shen B
    J Environ Manage; 2021 Apr; 284():112070. PubMed ID: 33561760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden.
    Lage S; Toffolo A; Gentili FG
    Chemosphere; 2021 Aug; 276():130122. PubMed ID: 33690042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Mousavi S; Najafpour GD; Mohammadi M
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30139-30150. PubMed ID: 30151786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microalgae screening under CO
    Hussain F; Shah SZ; Zhou W; Iqbal M
    J Photochem Photobiol B; 2017 May; 170():91-98. PubMed ID: 28410484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic study of nutrients removal from municipal wastewater by
    Chaudhary R; Tong YW; Dikshit AK
    Environ Technol; 2020 Feb; 41(5):617-626. PubMed ID: 30074855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide.
    Liu X; Ying K; Chen G; Zhou C; Zhang W; Zhang X; Cai Z; Holmes T; Tao Y
    Chemosphere; 2017 Nov; 186():977-985. PubMed ID: 28835006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultivation of Spirulina platensis for nutrient removal from piggery wastewater.
    Liang C; Zhang N; Pang Y; Li S; Shang J; Zhang Y; Kuang Z; Liu J; Fei H
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):85733-85745. PubMed ID: 37392298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass production of carbohydrate-rich filamentous microalgae coupled with treatment and nutrients recovery from acrylonitrile butadiene styrene based wastewater: Synergistic enhancement with low carbon dioxide supply strategy.
    Zheng H; Chen J; Hu X; Zhu F; Ali Kubar A; Zan X; Cui Y; Zhang C; Huo S
    Bioresour Technol; 2022 Apr; 349():126829. PubMed ID: 35143984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of co-culture strategy on nutrient removal and biogas upgrading by strigolactone induction.
    Shu L; Wang Z; Li Y; Zheng Z
    Water Environ Res; 2023 Jul; 95(7):e10907. PubMed ID: 37357159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.