These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 31279944)
1. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). Tian S; Liang S; Qiao K; Wang F; Zhang Y; Chai T J Hazard Mater; 2019 Dec; 380():120853. PubMed ID: 31279944 [TBL] [Abstract][Full Text] [Related]
2. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Takahashi R; Ishimaru Y; Shimo H; Ogo Y; Senoura T; Nishizawa NK; Nakanishi H Plant Cell Environ; 2012 Nov; 35(11):1948-57. PubMed ID: 22548273 [TBL] [Abstract][Full Text] [Related]
3. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Banakar R; Alvarez Fernández Á; Abadía J; Capell T; Christou P Plant Biotechnol J; 2017 Apr; 15(4):423-432. PubMed ID: 27633505 [TBL] [Abstract][Full Text] [Related]
4. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification. Yoneyama T; Ishikawa S; Fujimaki S Int J Mol Sci; 2015 Aug; 16(8):19111-29. PubMed ID: 26287170 [TBL] [Abstract][Full Text] [Related]
5. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Satoh-Nagasawa N; Mori M; Nakazawa N; Kawamoto T; Nagato Y; Sakurai K; Takahashi H; Watanabe A; Akagi H Plant Cell Physiol; 2012 Jan; 53(1):213-24. PubMed ID: 22123790 [TBL] [Abstract][Full Text] [Related]
6. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Takahashi R; Bashir K; Ishimaru Y; Nishizawa NK; Nakanishi H Plant Signal Behav; 2012 Dec; 7(12):1605-7. PubMed ID: 23072989 [TBL] [Abstract][Full Text] [Related]
7. Dissecting the promotional effect of zinc on cadmium translocation from roots to shoots in rice. Chang JD; Huang S; Wiseno I; Sui FQ; Feng F; Zheng L; Ma JF; Zhao FJ J Exp Bot; 2023 Nov; 74(21):6790-6803. PubMed ID: 37610886 [TBL] [Abstract][Full Text] [Related]
8. Cadmium-zinc cross-talk delineates toxicity tolerance in rice via differential genes expression and physiological / ultrastructural adjustments. Adil MF; Sehar S; Chen G; Chen ZH; Jilani G; Chaudhry AN; Shamsi IH Ecotoxicol Environ Saf; 2020 Mar; 190():110076. PubMed ID: 31838231 [TBL] [Abstract][Full Text] [Related]
9. Silicon-Mediated Enhancement of Heavy Metal Tolerance in Rice at Different Growth Stages. Huang F; Wen XH; Cai YX; Cai KZ Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30297625 [TBL] [Abstract][Full Text] [Related]
10. Improved Cd, Zn and Mn tolerance and reduced Cd accumulation in grains with wheat-based cell number regulator TaCNR2. Qiao K; Wang F; Liang S; Wang H; Hu Z; Chai T Sci Rep; 2019 Jan; 9(1):870. PubMed ID: 30696904 [TBL] [Abstract][Full Text] [Related]
11. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Yamaji N; Xia J; Mitani-Ueno N; Yokosho K; Feng Ma J Plant Physiol; 2013 Jun; 162(2):927-39. PubMed ID: 23575418 [TBL] [Abstract][Full Text] [Related]
12. Molecular characterization of a rice metal tolerance protein, OsMTP1. Yuan L; Yang S; Liu B; Zhang M; Wu K Plant Cell Rep; 2012 Jan; 31(1):67-79. PubMed ID: 21892614 [TBL] [Abstract][Full Text] [Related]
13. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Tan L; Zhu Y; Fan T; Peng C; Wang J; Sun L; Chen C Biochem Biophys Res Commun; 2019 Apr; 512(1):112-118. PubMed ID: 30871778 [TBL] [Abstract][Full Text] [Related]
14. Glutamate alleviates cadmium toxicity in rice via suppressing cadmium uptake and translocation. Jiang M; Jiang J; Li S; Li M; Tan Y; Song S; Shu Q; Huang J J Hazard Mater; 2020 Feb; 384():121319. PubMed ID: 31607581 [TBL] [Abstract][Full Text] [Related]
15. New Biofortification Tool: Wheat TaCNR5 Enhances Zinc and Manganese Tolerance and Increases Zinc and Manganese Accumulation in Rice Grains. Qiao K; Wang F; Liang S; Wang H; Hu Z; Chai T J Agric Food Chem; 2019 Sep; 67(35):9877-9884. PubMed ID: 31398030 [TBL] [Abstract][Full Text] [Related]
16. Down regulation of a heavy metal transporter gene influences several domestication traits and grain Fe-Zn content in rice. Kappara S; Neelamraju S; Ramanan R Plant Sci; 2018 Nov; 276():208-219. PubMed ID: 30348320 [TBL] [Abstract][Full Text] [Related]
17. Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Chou TS; Chao YY; Huang WD; Hong CY; Kao CH J Plant Physiol; 2011 Jul; 168(10):1021-30. PubMed ID: 21216027 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional Roles of Zinc in Cadmium Transport in Soil-Rice Systems: Novel Insights from Stable Isotope Fractionation and Gene Expression. Zhong S; Li X; Fang L; Bai J; Gao R; Huang Y; Huang Y; Liu Y; Liu C; Yin H; Liu T; Huang F; Li F Environ Sci Technol; 2024 Jul; 58(28):12467-12476. PubMed ID: 38966939 [TBL] [Abstract][Full Text] [Related]
19. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 Function Synergistically in Zinc/Cadmium Uptake. Tan L; Qu M; Zhu Y; Peng C; Wang J; Gao D; Chen C Plant Physiol; 2020 Jul; 183(3):1235-1249. PubMed ID: 32341004 [TBL] [Abstract][Full Text] [Related]
20. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. Sasaki A; Yamaji N; Ma JF J Exp Bot; 2014 Nov; 65(20):6013-21. PubMed ID: 25151617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]