These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31280054)

  • 1. Biomechanical assessment of vertebrae with lytic metastases with subject-specific finite element models.
    Costa MC; Eltes P; Lazary A; Varga PP; Viceconti M; Dall'Ara E
    J Mech Behav Biomed Mater; 2019 Oct; 98():268-290. PubMed ID: 31280054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type, size, and position of metastatic lesions explain the deformation of the vertebrae under complex loading conditions.
    Palanca M; Barbanti-Bròdano G; Marras D; Marciante M; Serra M; Gasbarrini A; Dall'Ara E; Cristofolini L
    Bone; 2021 Oct; 151():116028. PubMed ID: 34087385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conventional finite element models estimate the strength of metastatic human vertebrae despite alterations of the bone's tissue and structure.
    Stadelmann MA; Schenk DE; Maquer G; Lenherr C; Buck FM; Bosshardt DD; Hoppe S; Theumann N; Alkalay RN; Zysset PK
    Bone; 2020 Dec; 141():115598. PubMed ID: 32829037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of size and location of simulated lytic lesions on the structural properties of human vertebral bodies, a micro-finite element study.
    Costa MC; Campello LBB; Ryan M; Rochester J; Viceconti M; Dall'Ara E
    Bone Rep; 2020 Jun; 12():100257. PubMed ID: 32551335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of bone metastases on the mechanical competence of human vertebrae.
    Palanca M; Cavazzoni G; Dall'Ara E
    Bone; 2023 Aug; 173():116814. PubMed ID: 37257631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength.
    Lee CH; Landham PR; Eastell R; Adams MA; Dolan P; Yang L
    Proc Inst Mech Eng H; 2017 Sep; 231(9):821-830. PubMed ID: 28478734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A patient-specific computer tomography-based finite element methodology to calculate the six dimensional stiffness matrix of human vertebral bodies.
    Chevalier Y; Zysset PK
    J Biomech Eng; 2012 May; 134(5):051006. PubMed ID: 22757494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel technique with reduced computed tomography exposure to predict vertebral compression fracture: a finite element study based on rat vertebrae.
    Solitro GF; Mainnemare F; Amirouche F; Mehta A
    Med Biol Eng Comput; 2019 Apr; 57(4):795-805. PubMed ID: 30402789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography.
    Crawford RP; Cann CE; Keaveny TM
    Bone; 2003 Oct; 33(4):744-50. PubMed ID: 14555280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra.
    Unnikrishnan GU; Barest GD; Berry DB; Hussein AI; Morgan EF
    J Biomech Eng; 2013 Oct; 135(10):101007-11. PubMed ID: 23942609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method.
    Matsumoto T; Ohnishi I; Bessho M; Imai K; Ohashi S; Nakamura K
    Spine (Phila Pa 1976); 2009 Jun; 34(14):1464-9. PubMed ID: 19525837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the vertebral strength using a finite element model derived from low-dose biplanar imaging: benefits of subject-specific material properties.
    Sapin-de Brosses E; Jolivet E; Travert C; Mitton D; Skalli W
    Spine (Phila Pa 1976); 2012 Feb; 37(3):E156-62. PubMed ID: 22290213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.
    Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G
    J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical assessment of the effects of metastatic lytic defect on the structural response of human thoracolumbar spine.
    Alkalay RN; Harrigan TP
    J Orthop Res; 2016 Oct; 34(10):1808-1819. PubMed ID: 26748564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of screw tunnels on the biomechanical stability of vertebral body after pedicle screws removal: a finite element analysis.
    Liu JM; Zhang Y; Zhou Y; Chen XY; Huang SH; Hua ZK; Liu ZL
    Int Orthop; 2017 Jun; 41(6):1183-1187. PubMed ID: 28353052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].
    Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y
    Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the utility of the spinal instability neoplastic score (SINS) to predict fracture after conventional radiation therapy (RT) for spinal metastases.
    Shi DD; Hertan LM; Lam TC; Skamene S; Chi JH; Groff M; Cho CH; Ferrone ML; Harris M; Chen YH; Balboni TA
    Pract Radiat Oncol; 2018; 8(5):e285-e294. PubMed ID: 29703703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertebral strength prediction from Bi-Planar dual energy x-ray absorptiometry under anterior compressive force using a finite element model: An in vitro study.
    Choisne J; Valiadis JM; Travert C; Kolta S; Roux C; Skalli W
    J Mech Behav Biomed Mater; 2018 Nov; 87():190-196. PubMed ID: 30077078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.