These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31280113)

  • 1. Introducing the MARGOT prototype: An ultra-compact and mobile gas detection system for nuclear explosion monitoring.
    Thomas V; Delaune O; Cagniant A; Le Petit G; Fontaine JP
    Appl Radiat Isot; 2019 Oct; 152():91-100. PubMed ID: 31280113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mobile Analyzer of Radioactive Gases OuTflows (MARGOT): A promising environmental xenon radionuclides detection system.
    Thomas V; Delaune O; Le Petit G; Fontaine JP
    Appl Radiat Isot; 2019 Nov; 153():108820. PubMed ID: 31382085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative concept for a major breakthrough in atmospheric radioactive xenon detection for nuclear explosion monitoring.
    Le Petit G; Cagniant A; Morelle M; Gross P; Achim P; Douysset G; Taffary T; Moulin C
    J Radioanal Nucl Chem; 2013; 298(2):1159-1169. PubMed ID: 26224943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spalax™ new generation: A sensitive and selective noble gas system for nuclear explosion monitoring.
    Le Petit G; Cagniant A; Gross P; Douysset G; Topin S; Fontaine JP; Taffary T; Moulin C
    Appl Radiat Isot; 2015 Sep; 103():102-14. PubMed ID: 26073269
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Ranjbar L; Farsoni AT; Becker EM
    J Environ Radioact; 2017 Apr; 169-170():221-228. PubMed ID: 28161604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stilbene - CdZnTe based radioxenon detection system.
    Gadey HR; Farsoni AT; Czyz SA; McGee KD
    J Environ Radioact; 2019 Aug; 204():117-124. PubMed ID: 31029985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the detection sensitivity of a high-resolution β - γ coincidence spectrometer.
    Goodwin MA; Regan PH; Bell SJ; Britton R; Davies AV
    J Environ Radioact; 2022 Sep; 250():106915. PubMed ID: 35653874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.
    Khrustalev K; Popov VY; Popov YS
    Appl Radiat Isot; 2017 Aug; 126():237-239. PubMed ID: 28237292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for analysis of beta-gamma radioxenon spectra.
    Ringbom A; Axelsson A
    Appl Radiat Isot; 2020 Feb; 156():108950. PubMed ID: 31665651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency study of a big volume well type NaI(Tl) detector by point and voluminous sources and Monte-Carlo simulation.
    Hansman J; Mrdja D; Slivka J; Krmar M; Bikit I
    Appl Radiat Isot; 2015 May; 99():150-4. PubMed ID: 25769009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvements of low-level radioxenon detection sensitivity by a state-of-the art coincidence setup.
    Cagniant A; Le Petit G; Gross P; Douysset G; Richard-Bressand H; Fontaine JP
    Appl Radiat Isot; 2014 May; 87():48-52. PubMed ID: 24332879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved performance comparisons of radioxenon systems for low level releases in nuclear explosion monitoring.
    Haas DA; Eslinger PW; Bowyer TW; Cameron IM; Hayes JC; Lowrey JD; Miley HS
    J Environ Radioact; 2017 Nov; 178-179():127-135. PubMed ID: 28818645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Si(Li)-NaI(Tl) detector for direct measurement of plutonium in vivo.
    Sherman IS; Strauss MG; Pehl RH
    Health Phys; 1984 Nov; 47(5):711-21. PubMed ID: 6511415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of a NaI(Tl) detector for in situ radioactivity measurements in the marine environment.
    Zhang Y; Li C; Liu D; Zhang Y; Liu Y
    Appl Radiat Isot; 2015 Apr; 98():44-8. PubMed ID: 25635669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The characteristic release of noble gases from an underground nuclear explosion.
    Carrigan CR; Sun Y; Simpson MD
    J Environ Radioact; 2019 Jan; 196():91-97. PubMed ID: 30412838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Setting the baseline for estimated background observations at IMS systems of four radioxenon isotopes in 2014.
    Gueibe C; Kalinowski MB; Baré J; Gheddou A; Krysta M; Kusmierczyk-Michulec J
    J Environ Radioact; 2017 Nov; 178-179():297-314. PubMed ID: 28942373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated radioxenon monitoring for the comprehensive nuclear-test-ban treaty in two distinctive locations: Ottawa and Tahiti.
    Stocki TJ; Blanchard X; D'Amours R; Ungar RK; Fontaine JP; Sohier M; Bean M; Taffary T; Racine J; Tracy BL; Brachet G; Jean M; Meyerhof D
    J Environ Radioact; 2005; 80(3):305-26. PubMed ID: 15725505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields.
    Eklund K; Ahnesjö A
    Med Phys; 2010 Nov; 37(11):6055-60. PubMed ID: 21158317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A NaI(Tl)-based radioactive noble-gas monitoring system used for radiation monitoring.
    Li H; Lei W; Feng T; Huang D; Tian Z
    Appl Radiat Isot; 2020 Sep; 163():109230. PubMed ID: 32561063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atmospheric xenon radioactive isotope monitoring.
    Fontaine JP; Pointurier F; Blanchard X; Taffary T
    J Environ Radioact; 2004; 72(1-2):129-35. PubMed ID: 15162864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.