BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31280150)

  • 1. Shift of biofilm and suspended bacterial communities with changes in anode potential in a microbial electrolysis cell treating primary sludge.
    Zakaria BS; Lin L; Dhar BR
    Sci Total Environ; 2019 Nov; 689():691-699. PubMed ID: 31280150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in syntrophic microbial communities, EPS matrix, and gene-expression patterns in biofilm anode in response to silver nanoparticles exposure.
    Zakaria BS; Dhar BR
    Sci Total Environ; 2020 Sep; 734():139395. PubMed ID: 32454336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.
    Lu L; Xing D; Ren N
    Water Res; 2012 May; 46(7):2425-34. PubMed ID: 22374298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters.
    Kiely PD; Cusick R; Call DF; Selembo PA; Regan JM; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):388-94. PubMed ID: 20554197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of microbial electrolysis cells with bioanodes grown at different external resistances.
    Rago L; Monpart N; Cortés P; Baeza JA; Guisasola A
    Water Sci Technol; 2016; 73(5):1129-35. PubMed ID: 26942536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.
    Commault AS; Lear G; Packer MA; Weld RJ
    Bioresour Technol; 2013 Jul; 139():226-34. PubMed ID: 23665518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High current density with spatial distribution of Geobacter in anodic biofilm of the microbial electrolysis desalination and chemical-production cell with enlarged volumetric anode.
    Lan J; Ren Y; Luo H; Wang X; Liu G; Zhang R
    Sci Total Environ; 2022 Jul; 831():154798. PubMed ID: 35367555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC).
    Liu W; Wang A; Sun D; Ren N; Zhang Y; Zhou J
    J Biotechnol; 2012 Feb; 157(4):628-32. PubMed ID: 21939699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term continuous production of H2 in a microbial electrolysis cell (MEC) treating saline wastewater.
    Carmona-Martínez AA; Trably E; Milferstedt K; Lacroix R; Etcheverry L; Bernet N
    Water Res; 2015 Sep; 81():149-56. PubMed ID: 26057262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review.
    Lee HS; Xin W; Katakojwala R; Venkata Mohan S; Tabish NMD
    Bioresour Technol; 2022 Nov; 363():127934. PubMed ID: 36100184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of antimicrobial silver nanoparticles on anode respiring bacteria in a microbial electrolysis cell.
    Zakaria BS; Barua S; Sharaf A; Liu Y; Dhar BR
    Chemosphere; 2018 Dec; 213():259-267. PubMed ID: 30223131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells.
    Sun R; Zhou A; Jia J; Liang Q; Liu Q; Xing D; Ren N
    Bioresour Technol; 2015 Jan; 175():68-74. PubMed ID: 25459805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation and solid-liquid distribution of antibiotics in microbial electrolysis cells treating sewage sludge: Effects of temperature and applied voltage.
    Wu W; Li R
    Bioresour Technol; 2023 Jan; 368():128352. PubMed ID: 36403914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells.
    Gao Y; Ryu H; Santo Domingo JW; Lee HS
    Bioresour Technol; 2014 Feb; 153():245-53. PubMed ID: 24368273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strategy for enhancing anaerobic digestion of waste activated sludge: Driving anodic oxidation by adding nitrate into microbial electrolysis cell.
    Peng H; Zhao Z; Xiao H; Yang Y; Zhao H; Zhang Y
    J Environ Sci (China); 2019 Jul; 81():34-42. PubMed ID: 30975327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H
    Ki D; Popat SC; Rittmann BE; Torres CI
    Environ Sci Technol; 2017 Jun; 51(11):6139-6145. PubMed ID: 28485588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of electron donors and anode potentials on the anode-respiring bacteria community.
    Ying X; Guo K; Chen W; Gu Y; Shen D; Zhou Y; Liang Y; Wang Y; Wang M; Feng H
    Appl Microbiol Biotechnol; 2017 Nov; 101(21):7997-8005. PubMed ID: 28944402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial anodic consortia fed with fermentable substrates in microbial electrolysis cells: Significance of microbial structures.
    Flayac C; Trably E; Bernet N
    Bioelectrochemistry; 2018 Oct; 123():219-226. PubMed ID: 29874632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.