These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31280567)
1. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces. Zanetti-Polzi L; Biswas AD; Del Galdo S; Barone V; Daidone I J Phys Chem B; 2019 Aug; 123(30):6474-6480. PubMed ID: 31280567 [TBL] [Abstract][Full Text] [Related]
2. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. Biswas AD; Barone V; Daidone I J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750 [TBL] [Abstract][Full Text] [Related]
3. The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins. Guo S; Yang L; Hou C; Jiang S; Ma X; Shi L; Zheng B; Ye L; He X Int J Biol Macromol; 2024 Oct; 277(Pt 4):134562. PubMed ID: 39116982 [TBL] [Abstract][Full Text] [Related]
4. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins. Pal P; Chakraborty S; Jana B J Phys Chem B; 2020 Jun; 124(23):4686-4696. PubMed ID: 32425044 [TBL] [Abstract][Full Text] [Related]
5. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation. Pal P; Aich R; Chakraborty S; Jana B Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094 [TBL] [Abstract][Full Text] [Related]
6. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Chakraborty S; Jana B Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique. Flores A; Quon JC; Perez AF; Ba Y Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966 [TBL] [Abstract][Full Text] [Related]
8. Molecular structure of a hyperactive antifreeze protein adsorbed to ice. Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062 [TBL] [Abstract][Full Text] [Related]
9. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins. Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018 [TBL] [Abstract][Full Text] [Related]
10. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. Sun T; Gauthier SY; Campbell RL; Davies PL J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748 [TBL] [Abstract][Full Text] [Related]
11. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study. Midya US; Bandyopadhyay S J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341 [TBL] [Abstract][Full Text] [Related]
12. Structure and application of antifreeze proteins from Antarctic bacteria. Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139 [TBL] [Abstract][Full Text] [Related]
13. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein. Kuffel A; Czapiewski D; Zielkiewicz J J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616 [TBL] [Abstract][Full Text] [Related]
14. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740 [TBL] [Abstract][Full Text] [Related]
15. Janus effect of antifreeze proteins on ice nucleation. Liu K; Wang C; Ma J; Shi G; Yao X; Fang H; Song Y; Wang J Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14739-14744. PubMed ID: 27930318 [TBL] [Abstract][Full Text] [Related]
16. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin. Duboué-Dijon E; Laage D J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800 [TBL] [Abstract][Full Text] [Related]
17. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation. Halder S; Mukhopadhyay C J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844 [TBL] [Abstract][Full Text] [Related]
18. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature? Kar RK; Bhunia A J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639 [TBL] [Abstract][Full Text] [Related]
19. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940 [TBL] [Abstract][Full Text] [Related]
20. Solvation Layer of Antifreeze Proteins Analyzed with a Markov State Model. Wellig S; Hamm P J Phys Chem B; 2018 Dec; 122(49):11014-11022. PubMed ID: 29889528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]