BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31280567)

  • 1. Hydration Shell of Antifreeze Proteins: Unveiling the Role of Non-Ice-Binding Surfaces.
    Zanetti-Polzi L; Biswas AD; Del Galdo S; Barone V; Daidone I
    J Phys Chem B; 2019 Aug; 123(30):6474-6480. PubMed ID: 31280567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins.
    Biswas AD; Barone V; Daidone I
    J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the Role of the Non-ice-binding Surface in the Antifreeze Activity of Hyperactive Antifreeze Proteins.
    Pal P; Chakraborty S; Jana B
    J Phys Chem B; 2020 Jun; 124(23):4686-4696. PubMed ID: 32425044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Factors of Ice Growth Inhibition for Hyperactive and Globular Antifreeze Proteins: Insights from Molecular Dynamics Simulation.
    Pal P; Aich R; Chakraborty S; Jana B
    Langmuir; 2022 Dec; 38(49):15132-15144. PubMed ID: 36450094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structure of a hyperactive antifreeze protein adsorbed to ice.
    Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ
    J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preordering of water is not needed for ice recognition by hyperactive antifreeze proteins.
    Hudait A; Moberg DR; Qiu Y; Odendahl N; Paesani F; Molinero V
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):8266-8271. PubMed ID: 29987018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.
    Sun T; Gauthier SY; Campbell RL; Davies PL
    J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein.
    Kuffel A; Czapiewski D; Zielkiewicz J
    J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Janus effect of antifreeze proteins on ice nucleation.
    Liu K; Wang C; Ma J; Shi G; Yao X; Fang H; Song Y; Wang J
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14739-14744. PubMed ID: 27930318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin.
    Duboué-Dijon E; Laage D
    J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature?
    Kar RK; Bhunia A
    J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvation Layer of Antifreeze Proteins Analyzed with a Markov State Model.
    Wellig S; Hamm P
    J Phys Chem B; 2018 Dec; 122(49):11014-11022. PubMed ID: 29889528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.