These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 31280673)
1. Hit identification of SMYD3 enzyme inhibitors using structure-based pharmacophore modeling. Alnabulsi SM; Al-Shar'i NA Future Med Chem; 2019 May; 11(10):1107-1117. PubMed ID: 31280673 [No Abstract] [Full Text] [Related]
2. Structure-Based Design of a Novel SMYD3 Inhibitor that Bridges the SAM-and MEKK2-Binding Pockets. Van Aller GS; Graves AP; Elkins PA; Bonnette WG; McDevitt PJ; Zappacosta F; Annan RS; Dean TW; Su DS; Carpenter CL; Mohammad HP; Kruger RG Structure; 2016 May; 24(5):774-781. PubMed ID: 27066749 [TBL] [Abstract][Full Text] [Related]
3. Small-molecule inhibitors of lysine methyltransferases SMYD2 and SMYD3: current trends. Fabini E; Manoni E; Ferroni C; Rio AD; Bartolini M Future Med Chem; 2019 Apr; 11(8):901-921. PubMed ID: 30998113 [TBL] [Abstract][Full Text] [Related]
4. Discovery of the SMYD3 Inhibitor BAY-6035 Using Thermal Shift Assay (TSA)-Based High-Throughput Screening. Gradl S; Steuber H; Weiske J; Szewczyk MM; Schmees N; Siegel S; Stoeckigt D; Christ CD; Li F; Organ S; Abbey M; Kennedy S; Chau I; Trush V; Barsyte-Lovejoy D; Brown PJ; Vedadi M; Arrowsmith C; Husemann M; Badock V; Bauser M; Haegebarth A; Hartung IV; Stresemann C SLAS Discov; 2021 Sep; 26(8):947-960. PubMed ID: 34154424 [TBL] [Abstract][Full Text] [Related]
5. In Silico/In Vitro Hit-to-Lead Methodology Yields SMYD3 Inhibitor That Eliminates Unrestrained Proliferation of Breast Carcinoma Cells. Alshiraihi IM; Jarrell DK; Arhouma Z; Hassell KN; Montgomery J; Padilla A; Ibrahim HM; Crans DC; Kato TA; Brown MA Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33333978 [TBL] [Abstract][Full Text] [Related]
6. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Mazur PK; Reynoird N; Khatri P; Jansen PW; Wilkinson AW; Liu S; Barbash O; Van Aller GS; Huddleston M; Dhanak D; Tummino PJ; Kruger RG; Garcia BA; Butte AJ; Vermeulen M; Sage J; Gozani O Nature; 2014 Jun; 510(7504):283-7. PubMed ID: 24847881 [TBL] [Abstract][Full Text] [Related]
7. Lysine methylation in cancer: SMYD3-MAP3K2 teaches us new lessons in the Ras-ERK pathway. Colón-Bolea P; Crespo P Bioessays; 2014 Dec; 36(12):1162-9. PubMed ID: 25382779 [TBL] [Abstract][Full Text] [Related]
8. Structural Basis for Substrate Preference of SMYD3, a SET Domain-containing Protein Lysine Methyltransferase. Fu W; Liu N; Qiao Q; Wang M; Min J; Zhu B; Xu RM; Yang N J Biol Chem; 2016 Apr; 291(17):9173-80. PubMed ID: 26929412 [TBL] [Abstract][Full Text] [Related]
9. Structural insights into the autoinhibition and posttranslational activation of histone methyltransferase SmyD3. Sirinupong N; Brunzelle J; Doko E; Yang Z J Mol Biol; 2011 Feb; 406(1):149-59. PubMed ID: 21167177 [TBL] [Abstract][Full Text] [Related]
10. Discovery of novel small molecule inhibitors of lysine methyltransferase G9a and their mechanism in leukemia cell lines. Kondengaden SM; Luo LF; Huang K; Zhu M; Zang L; Bataba E; Wang R; Luo C; Wang B; Li KK; Wang PG Eur J Med Chem; 2016 Oct; 122():382-393. PubMed ID: 27393948 [TBL] [Abstract][Full Text] [Related]
11. Unveiling the Biochemistry of the Epigenetic Regulator SMYD3. Fabini E; Talibov VO; Mihalic F; Naldi M; Bartolini M; Bertucci C; Del Rio A; Danielson UH Biochemistry; 2019 Sep; 58(35):3634-3645. PubMed ID: 31389685 [TBL] [Abstract][Full Text] [Related]
15. The discovery of novel histone lysine methyltransferase G9a inhibitors (part 1): molecular design based on a series of substituted 2,4-diamino-7- aminoalkoxyquinazoline by molecular-docking-guided 3D quantitative structure-activity relationship studies. Feng T; Wang H; Zhang X; Sun H; You Q Med Chem; 2014 Jun; 10(4):426-40. PubMed ID: 24151879 [TBL] [Abstract][Full Text] [Related]
16. A High-Throughput Dose-Response Cellular Thermal Shift Assay for Rapid Screening of Drug Target Engagement in Living Cells, Exemplified Using SMYD3 and IDO1. McNulty DE; Bonnette WG; Qi H; Wang L; Ho TF; Waszkiewicz A; Kallal LA; Nagarajan RP; Stern M; Quinn AM; Creasy CL; Su DS; Graves AP; Annan RS; Sweitzer SM; Holbert MA SLAS Discov; 2018 Jan; 23(1):34-46. PubMed ID: 28957646 [TBL] [Abstract][Full Text] [Related]
17. Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation. Thomenius MJ; Totman J; Harvey D; Mitchell LH; Riera TV; Cosmopoulos K; Grassian AR; Klaus C; Foley M; Admirand EA; Jahic H; Majer C; Wigle T; Jacques SL; Gureasko J; Brach D; Lingaraj T; West K; Smith S; Rioux N; Waters NJ; Tang C; Raimondi A; Munchhof M; Mills JE; Ribich S; Porter Scott M; Kuntz KW; Janzen WP; Moyer M; Smith JJ; Chesworth R; Copeland RA; Boriack-Sjodin PA PLoS One; 2018; 13(6):e0197372. PubMed ID: 29856759 [TBL] [Abstract][Full Text] [Related]
18. Ligand- and structure-based in silico studies to identify kinesin spindle protein (KSP) inhibitors as potential anticancer agents. Balakumar C; Ramesh M; Tham CL; Khathi SP; Kozielski F; Srinivasulu C; Hampannavar GA; Sayyad N; Soliman ME; Karpoormath R J Biomol Struct Dyn; 2018 Nov; 36(14):3687-3704. PubMed ID: 29064326 [TBL] [Abstract][Full Text] [Related]
19. Identification of a novel selective small-molecule inhibitor of protein arginine methyltransferase 5 (PRMT5) by virtual screening, resynthesis and biological evaluations. Zhu K; Jiang C; Tao H; Liu J; Zhang H; Luo C Bioorg Med Chem Lett; 2018 May; 28(9):1476-1483. PubMed ID: 29628326 [TBL] [Abstract][Full Text] [Related]
20. Identification and characterization of the first fragment hits for SETDB1 Tudor domain. Mader P; Mendoza-Sanchez R; Iqbal A; Dong A; Dobrovetsky E; Corless VB; Liew SK; Houliston SR; De Freitas RF; Smil D; Sena CCD; Kennedy S; Diaz DB; Wu H; Dombrovski L; Allali-Hassani A; Min J; Schapira M; Vedadi M; Brown PJ; Santhakumar V; Yudin AK; Arrowsmith CH Bioorg Med Chem; 2019 Sep; 27(17):3866-3878. PubMed ID: 31327677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]