BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 31280924)

  • 1. Stable Representations of Decision Variables for Flexible Behavior.
    Bari BA; Grossman CD; Lubin EE; Rajagopalan AE; Cressy JI; Cohen JY
    Neuron; 2019 Sep; 103(5):922-933.e7. PubMed ID: 31280924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefrontal Dopamine D
    Jenni NL; Larkin JD; Floresco SB
    J Neurosci; 2017 Jun; 37(26):6200-6213. PubMed ID: 28546312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurons in rat orbitofrontal cortex and medial prefrontal cortex exhibit distinct responses in reward and strategy-update in a risk-based decision-making task.
    Hong DD; Huang WQ; Ji AA; Yang SS; Xu H; Sun KY; Cao A; Gao WJ; Zhou N; Yu P
    Metab Brain Dis; 2019 Apr; 34(2):417-429. PubMed ID: 30535618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Choice, uncertainty and value in prefrontal and cingulate cortex.
    Rushworth MF; Behrens TE
    Nat Neurosci; 2008 Apr; 11(4):389-97. PubMed ID: 18368045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cortical circuit mechanism for structural knowledge-based flexible sensorimotor decision-making.
    Liu Y; Xin Y; Xu NL
    Neuron; 2021 Jun; 109(12):2009-2024.e6. PubMed ID: 33957065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Interaction between Reinforcement Learning and Attention in Multidimensional Environments.
    Leong YC; Radulescu A; Daniel R; DeWoskin V; Niv Y
    Neuron; 2017 Jan; 93(2):451-463. PubMed ID: 28103483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-individual differences in decision-making, flexible and goal-directed behaviors: novel insights within the prefronto-striatal networks.
    Fitoussi A; Renault P; Le Moine C; Coutureau E; Cador M; Dellu-Hagedorn F
    Brain Struct Funct; 2018 Mar; 223(2):897-912. PubMed ID: 29026986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of Prefrontal Neurons Predict Future Choices during Gambling.
    Passecker J; Mikus N; Malagon-Vina H; Anner P; Dimidschstein J; Fishell G; Dorffner G; Klausberger T
    Neuron; 2019 Jan; 101(1):152-164.e7. PubMed ID: 30528555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral theories and the neurophysiology of reward.
    Schultz W
    Annu Rev Psychol; 2006; 57():87-115. PubMed ID: 16318590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dorsomedial striatal contributions to different forms of risk/reward decision making.
    Schumacher JD; van Holstein M; Bagrodia V; Le Bouder HB; Floresco SB
    Neurobiol Learn Mem; 2021 Feb; 178():107369. PubMed ID: 33383183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient-Sensitive Reinforcement Learning in Monkeys.
    Huang FY; Grabenhorst F
    J Neurosci; 2023 Mar; 43(10):1714-1730. PubMed ID: 36669886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal Encoding in Prefrontal Cortex during Hierarchical Reinforcement Learning.
    Chiang FK; Wallis JD
    J Cogn Neurosci; 2018 Aug; 30(8):1197-1208. PubMed ID: 29694261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Abused Inhalant Toluene Impairs Medial Prefrontal Cortex Activity and Risk/Reward Decision-Making during a Probabilistic Discounting Task.
    Braunscheidel KM; Okas MP; Hoffman M; Mulholland PJ; Floresco SB; Woodward JJ
    J Neurosci; 2019 Nov; 39(46):9207-9220. PubMed ID: 31548237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of value-based decision making behavior by subregions of the rat prefrontal cortex.
    Verharen JPH; den Ouden HEM; Adan RAH; Vanderschuren LJMJ
    Psychopharmacology (Berl); 2020 May; 237(5):1267-1280. PubMed ID: 32025777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coding of the long-term value of multiple future rewards in the primate striatum.
    Yamada H; Inokawa H; Matsumoto N; Ueda Y; Enomoto K; Kimura M
    J Neurophysiol; 2013 Feb; 109(4):1140-51. PubMed ID: 23175806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dorsomedial striatum reflects response bias during learning.
    Kimchi EY; Laubach M
    J Neurosci; 2009 Nov; 29(47):14891-902. PubMed ID: 19940185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies.
    Ellwood IT; Patel T; Wadia V; Lee AT; Liptak AT; Bender KJ; Sohal VS
    J Neurosci; 2017 Aug; 37(35):8315-8329. PubMed ID: 28739583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes.
    Groman SM; Keistler C; Keip AJ; Hammarlund E; DiLeone RJ; Pittenger C; Lee D; Taylor JR
    Neuron; 2019 Aug; 103(4):734-746.e3. PubMed ID: 31253468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signals in human striatum are appropriate for policy update rather than value prediction.
    Li J; Daw ND
    J Neurosci; 2011 Apr; 31(14):5504-11. PubMed ID: 21471387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.