These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31281029)

  • 1. A modified high-efficiency thermal asymmetric interlaced PCR method for amplifying long unknown flanking sequences.
    Tan J; Gong Q; Yu S; Hou Y; Zeng D; Zhu Q; Liu YG
    J Genet Genomics; 2019 Jul; 46(7):363-366. PubMed ID: 31281029
    [No Abstract]   [Full Text] [Related]  

  • 2. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences.
    Liu YG; Chen Y
    Biotechniques; 2007 Nov; 43(5):649-50, 652, 654 passim. PubMed ID: 18072594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A-T linker adapter polymerase chain reaction for determining flanking sequences by rescuing inverse PCR or thermal asymmetric interlaced PCR products.
    Trinh Q; Zhu P; Shi H; Xu W; Hao J; Luo Y; Huang K
    Anal Biochem; 2014 Dec; 466():24-6. PubMed ID: 25086366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking.
    Liu YG; Whittier RF
    Genomics; 1995 Feb; 25(3):674-81. PubMed ID: 7759102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of genomic sequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction.
    Liu YG; Chen Y; Zhang Q
    Methods Mol Biol; 2005; 286():341-8. PubMed ID: 15310932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal asymmetric interlaced PCR amplification of YAC insert end fragments for chromosome walking in Plasmodium falciparum and other A/T-rich genomes.
    Foster JM; Christodoulou Z; Cowan GM; Newbold CI
    Biotechniques; 1999 Aug; 27(2):240, 244, 246. PubMed ID: 10457822
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation of the 5'-flanking region of genes by thermal asymmetric interlaced polymerase chain reaction.
    Nakayama T; Soma M; Rahmutula D; Ozawa Y; Kanmatsuse K
    Med Sci Monit; 2001; 7(3):345-9. PubMed ID: 11386007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR.
    Liu YG; Mitsukawa N; Oosumi T; Whittier RF
    Plant J; 1995 Sep; 8(3):457-63. PubMed ID: 7550382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-formed adaptor PCR: a simple and efficient method for chromosome walking.
    Wang S; He J; Cui Z; Li S
    Appl Environ Microbiol; 2007 Aug; 73(15):5048-51. PubMed ID: 17483260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of T-DNA- Xa21 loci and bacterial blight resistance effects of the transgene Xa21 in transgenic rice.
    Zhai W; Chen C; Zhu X; Chen X; Zhang D; Li X; Zhu L
    Theor Appl Genet; 2004 Aug; 109(3):534-42. PubMed ID: 15088086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TADEA-PCR is a highly efficient method of amplifying unknown flanking fragments of T-DNA transformants.
    Yang Y; Cao Y; Xu HQ; Gao L; Guo X; Liu XQ; Zhang L; Zhang XX; Wang DY
    Physiol Plant; 2018 Nov; 164(3):242-250. PubMed ID: 29235671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of T-DNA and Ac/Ds by TAIL-PCR to Analyze Chromosomal Rearrangements.
    Fujimoto S; Matsunaga S; Murata M
    Methods Mol Biol; 2016; 1469():207-16. PubMed ID: 27557698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial inverse PCR: a technique for cloning flanking sequences.
    Pang KM; Knecht DA
    Biotechniques; 1997 Jun; 22(6):1046-8. PubMed ID: 9187748
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of DNA sequences that flank a known region by inverse PCR.
    Pavlopoulos A
    Methods Mol Biol; 2011; 772():267-75. PubMed ID: 22065444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for amplification of unknown flanking sequences based on touchdown PCR and suppression-PCR.
    Gao S; He D; Li G; Zhang Y; Lv H; Wang L
    Anal Biochem; 2016 Sep; 509():79-81. PubMed ID: 27393656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence.
    Liu J; Guo J; Zhang H; Li N; Yang L; Zhang D
    J Agric Food Chem; 2009 Nov; 57(22):10524-30. PubMed ID: 19860467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-throughput genome-walking method and its use for cloning unknown flanking sequences.
    Reddy PS; Mahanty S; Kaul T; Nair S; Sopory SK; Reddy MK
    Anal Biochem; 2008 Oct; 381(2):248-53. PubMed ID: 18674512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loop-linker PCR: an advanced PCR technique for genome walking.
    Trinh Q; Shi H; Xu W; Hao J; Luo Y; Huang K
    IUBMB Life; 2012 Oct; 64(10):841-5. PubMed ID: 23008115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [High efficiency genome walking method for flanking sequences of cotton mitochondrial double-copy atpA gene based on optimized inverse PCR and TAIL-PCR].
    Zhang X; Zhang R; Sun G; Shi J; Meng Z; Zhou T; Hou S; Liang C; Yu Y; Guo S
    Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):104-15. PubMed ID: 22667114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequent problems and their resolutions by using thermal asymmetric interlaced PCR (TAIL-PCR) to clone genes in
    Wu L; Di DW; Zhang D; Song B; Luo P; Guo GQ
    Biotechnol Biotechnol Equip; 2015 Mar; 29(2):260-267. PubMed ID: 26019639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.