BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 31281152)

  • 21. Frequency of JAK2V617F, MPL and CALR driver mutations and associated clinical characteristics in a Norwegian patient cohort with myeloproliferative neoplasms.
    Lilleskare S; Vorland M; Vo AK; Aarsand AK; Reikvam H
    Scand J Clin Lab Invest; 2023 Feb; 83(1):3-7. PubMed ID: 36476017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Impact of JAK2 V617F, CALR, and MPL Mutations as Molecular Diagnostic Markers of Myeloproliferative Neoplasms in Kurdish Patients. A Single-center Experience.
    Basim Najm M; Jalal SD; Getta HA
    Cell Mol Biol (Noisy-le-grand); 2022 Aug; 68(8):202-209. PubMed ID: 36800830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent insights regarding the molecular basis of myeloproliferative neoplasms.
    Jang MA; Choi CW
    Korean J Intern Med; 2020 Jan; 35(1):1-11. PubMed ID: 31778606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calreticulin exon 9 mutations in myeloproliferative neoplasms.
    Ha JS; Kim YK
    Ann Lab Med; 2015 Jan; 35(1):22-7. PubMed ID: 25553276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Relationship between Calreticulin Gene Mutation and JAK2/MPL Negative Myeloproliferative Neoplasms].
    Dong L; Shen XL; Wei W
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2015 Oct; 23(5):1532-4. PubMed ID: 26524072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current Concepts of Pathogenesis and Treatment of Philadelphia Chromosome-Negative Myeloproliferative Neoplasms.
    Zeeh FC; Meyer SC
    Hamostaseologie; 2021 Jun; 41(3):197-205. PubMed ID: 34192778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms.
    O'Sullivan JM; Harrison CN
    Mol Cell Endocrinol; 2017 Aug; 451():71-79. PubMed ID: 28167129
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic-pathologic characterization of myeloproliferative neoplasms.
    Kim Y; Park J; Jo I; Lee GD; Kim J; Kwon A; Choi H; Jang W; Chae H; Han K; Eom KS; Cho BS; Lee SE; Yang J; Shin SH; Kim H; Ko YH; Park H; Jin JY; Lee S; Jekarl DW; Yahng SA; Kim M
    Exp Mol Med; 2016 Jul; 48(7):e247. PubMed ID: 27444979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myeloproliferative Neoplasms, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology.
    Mesa R; Jamieson C; Bhatia R; Deininger MW; Gerds AT; Gojo I; Gotlib J; Gundabolu K; Hobbs G; Klisovic RB; Kropf P; Mohan SR; Oh S; Padron E; Podoltsev N; Pollyea DA; Rampal R; Rein LA; Scott B; Snyder DS; Stein BL; Verstovsek S; Wadleigh M; Wang ES; Bergman MA; Gregory KM; Sundar H
    J Natl Compr Canc Netw; 2016 Dec; 14(12):1572-1611. PubMed ID: 27956542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oncogenic Drivers in Myeloproliferative Neoplasms: From JAK2 to Calreticulin Mutations.
    Cahu X; Constantinescu SN
    Curr Hematol Malig Rep; 2015 Dec; 10(4):335-43. PubMed ID: 26370832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MPL overexpression induces a high level of mutant-CALR/MPL complex: a novel mechanism of ruxolitinib resistance in myeloproliferative neoplasms with CALR mutations.
    Yasuda S; Aoyama S; Yoshimoto R; Li H; Watanabe D; Akiyama H; Yamamoto K; Fujiwara T; Najima Y; Doki N; Sakaida E; Edahiro Y; Imai M; Araki M; Komatsu N; Miura O; Kawamata N
    Int J Hematol; 2021 Oct; 114(4):424-440. PubMed ID: 34165774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular testing for JAK2, MPL, and CALR in myeloproliferative neoplasms.
    Xia D; Hasserjian RP
    Am J Hematol; 2016 Dec; 91(12):1277-1280. PubMed ID: 27727468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular biomarkers of thrombosis in myeloproliferative neoplasms.
    Barbui T; Falanga A
    Thromb Res; 2016 Apr; 140 Suppl 1():S71-5. PubMed ID: 27067982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype?
    Ahmed RZ; Rashid M; Ahmed N; Nadeem M; Shamsi TS
    Asian Pac J Cancer Prev; 2016; 17(3):923-6. PubMed ID: 27039813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. JAK2 mutations and clinical practice in myeloproliferative neoplasms.
    Tefferi A
    Cancer J; 2007; 13(6):366-71. PubMed ID: 18032973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Philadelphia chromosome-negative myeloproliferative neoplasms: clinical aspects and treatment options.
    Gotoh A
    Int J Hematol; 2022 May; 115(5):616-618. PubMed ID: 35397744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic and Clinical Characteristics of Patients with Philadelphia-Negative Myeloproliferative Neoplasm Carrying Concurrent Mutations in
    Wang Y; Ran F; Lin J; Zhang J; Ma D
    Technol Cancer Res Treat; 2023; 22():15330338231154092. PubMed ID: 36744404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Molecular Genetics of Myeloproliferative Neoplasms.
    Marneth AE; Mullally A
    Cold Spring Harb Perspect Med; 2020 Feb; 10(2):. PubMed ID: 31548225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thrombopoietin is required for full phenotype expression in a JAK2V617F transgenic mouse model of polycythemia vera.
    Spivak JL; Merchant A; Williams DM; Rogers O; Zhao W; Duffield A; Resar LS; Moliterno AR; Zhao ZJ
    PLoS One; 2020; 15(6):e0232801. PubMed ID: 32479500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MPL W515L mutation in Chinese patients with myeloproliferative diseases.
    Xu W; Li JY; Xia J; Zhang SJ; Fan L; Qiao C
    Leuk Lymphoma; 2008 May; 49(5):955-8. PubMed ID: 18464114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.