BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 31281172)

  • 21. Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure.
    Demmer JK; Huang H; Wang S; Demmer U; Thauer RK; Ermler U
    J Biol Chem; 2015 Sep; 290(36):21985-95. PubMed ID: 26139605
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The NAD(P)H:flavin oxidoreductase from Escherichia coli. Evidence for a new mode of binding for reduced pyridine nucleotides.
    Nivière V; Fieschi F; Dećout JL; Fontecave M
    J Biol Chem; 1999 Jun; 274(26):18252-60. PubMed ID: 10373427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase.
    Louie TM; Yang H; Karnchanaphanurach P; Xie XS; Xun L
    J Biol Chem; 2002 Oct; 277(42):39450-5. PubMed ID: 12177066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reactions of antimalarial peroxides with each of leucomethylene blue and dihydroflavins: flavin reductase and the cofactor model exemplified.
    Haynes RK; Cheu KW; Tang MM; Chen MJ; Guo ZF; Guo ZH; Coghi P; Monti D
    ChemMedChem; 2011 Feb; 6(2):279-91. PubMed ID: 21275052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermostable flavin reductase that couples with dibenzothiophene monooxygenase, from thermophilic Bacillus sp. DSM411: purification, characterization, and gene cloning.
    Ohshiro T; Yamada H; Shimoda T; Matsubara T; Izumi Y
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1712-21. PubMed ID: 15322355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA detection through signal amplification by using NADH: flavin oxidoreductase and oligonucleotide-flavin conjugates as cofactors.
    Simon P; Dueymes C; Fontecave M; Décout JL
    Angew Chem Int Ed Engl; 2005 Apr; 44(18):2764-2767. PubMed ID: 15772944
    [No Abstract]   [Full Text] [Related]  

  • 27. Reduction of exogenous flavins and mobilization of iron from ferritin by isolated mitochondria.
    Ulvik RJ
    J Bioenerg Biomembr; 1983 Jun; 15(3):151-60. PubMed ID: 18251103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The flavoprotein component of the Escherichia coli sulfite reductase: expression, purification, and spectral and catalytic properties of a monomeric form containing both the flavin adenine dinucleotide and the flavin mononucleotide cofactors.
    Zeghouf M; Fontecave M; Macherel D; Covès J
    Biochemistry; 1998 Apr; 37(17):6114-23. PubMed ID: 9558350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism and substrate specificity of the flavin reductase ActVB from Streptomyces coelicolor.
    Filisetti L; Fontecave M; Niviere V
    J Biol Chem; 2003 Jan; 278(1):296-303. PubMed ID: 12417584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis.
    Zenno S; Saigo K
    J Bacteriol; 1994 Jun; 176(12):3544-51. PubMed ID: 8206831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The siderophore-interacting protein YqjH acts as a ferric reductase in different iron assimilation pathways of Escherichia coli.
    Miethke M; Hou J; Marahiel MA
    Biochemistry; 2011 Dec; 50(50):10951-64. PubMed ID: 22098718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LuxG is a functioning flavin reductase for bacterial luminescence.
    Nijvipakul S; Wongratana J; Suadee C; Entsch B; Ballou DP; Chaiyen P
    J Bacteriol; 2008 Mar; 190(5):1531-8. PubMed ID: 18156264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flavin specificity and subunit interaction of Vibrio fischeri general NAD(P)H-flavin oxidoreductase FRG/FRase I.
    Tang CK; Jeffers CE; Nichols JC; Tu SC
    Arch Biochem Biophys; 2001 Aug; 392(1):110-6. PubMed ID: 11469801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cys5 and Cys214 of NAD(P)H:flavin oxidoreductase from Escherichia coli are located in the active site.
    Fieschi F; Nivière V; Fontecave M
    Eur J Biochem; 1996 May; 237(3):870-5. PubMed ID: 8647136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction of Cob(III)alamin to Cob(II)alamin in Salmonella enterica serovar typhimurium LT2.
    Fonseca MV; Escalante-Semerena JC
    J Bacteriol; 2000 Aug; 182(15):4304-9. PubMed ID: 10894741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction.
    Takeda K; Iizuka M; Watanabe T; Nakagawa J; Kawasaki S; Niimura Y
    FEBS J; 2007 Mar; 274(5):1318-27. PubMed ID: 17298443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans.
    Sedláček V; Klumpler T; Marek J; Kučera I
    PLoS One; 2014; 9(5):e96262. PubMed ID: 24817153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator.
    Knight SAB; Lesuisse E; Stearman R; Klausner RD; Dancis A
    Microbiology (Reading); 2002 Jan; 148(Pt 1):29-40. PubMed ID: 11782496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli.
    Abdurachim K; Ellis HR
    J Bacteriol; 2006 Dec; 188(23):8153-9. PubMed ID: 16997955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.