BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31282164)

  • 1. In Situ Single-Molecule AFM Investigation of Surface-Induced Fibrinogen Unfolding on Graphite.
    Dubrovin EV; Barinov NA; Schäffer TE; Klinov DV
    Langmuir; 2019 Jul; 35(30):9732-9739. PubMed ID: 31282164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal denaturation of fibrinogen visualized by single-molecule atomic force microscopy.
    Barinov NA; Protopopova AD; Dubrovin EV; Klinov DV
    Colloids Surf B Biointerfaces; 2018 Jul; 167():370-376. PubMed ID: 29698786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of (anti)metamorphic properties of modified graphitic surfaces obtained in real time at a single-molecule level.
    Dubrovin EV; Klinov DV; Schäffer TE
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111077. PubMed ID: 32408260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AFM visualization at a single-molecule level of denaturated states of proteins on graphite.
    Barinov NA; Prokhorov VV; Dubrovin EV; Klinov DV
    Colloids Surf B Biointerfaces; 2016 Oct; 146():777-84. PubMed ID: 27451365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force microscopy investigation of DNA denaturation on a highly oriented pyrolytic graphite surface.
    Barinov NA; Ivanov DA; Dubrovin EV; Klinov DV
    Int J Biol Macromol; 2024 May; 267(Pt 2):131630. PubMed ID: 38631581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of human plasma fibrinogen with commercially pure titanium as studied with atomic force microscopy and X-ray photoelectron spectroscopy.
    Keere IV; Willaert R; Hubin A; Vereecken J
    Langmuir; 2008 Mar; 24(5):1844-52. PubMed ID: 18193901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-Lapse Single-Biomolecule Atomic Force Microscopy Investigation on Modified Graphite in Solution.
    Dubrovin EV; Schächtele M; Klinov DV; Schäffer TE
    Langmuir; 2017 Sep; 33(38):10027-10034. PubMed ID: 28850785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution atomic force microscopy visualization of metalloproteins and their complexes.
    Barinov NA; Vlasova II; Sokolov AV; Kostevich VA; Dubrovin EV; Klinov DV
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2862-2868. PubMed ID: 30251674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulations of the Initial Adsorption Stages of Fibrinogen on Mica and Graphite Surfaces.
    Köhler S; Schmid F; Settanni G
    Langmuir; 2015 Dec; 31(48):13180-90. PubMed ID: 26569042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of fibrinogen αC regions and their arrangement during fibrin network formation by high-resolution AFM.
    Protopopova AD; Barinov NA; Zavyalova EG; Kopylov AM; Sergienko VI; Klinov DV
    J Thromb Haemost; 2015 Apr; 13(4):570-9. PubMed ID: 25393591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual plasma proteins detected on rough biomaterials by phase imaging AFM.
    Holland NB; Marchant RE
    J Biomed Mater Res; 2000 Sep; 51(3):307-15. PubMed ID: 10880071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of human serum albumin onto highly orientated pyrolytic graphite surface studied by atomic force microscopy.
    Peng X; Fu H; Liu R; Zhao L; Zu Y; Xu F; Liu Z
    Scanning; 2015; 37(2):158-64. PubMed ID: 25684275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent conformational changes in fibrinogen measured by atomic force microscopy.
    Agnihotri A; Siedlecki CA
    Langmuir; 2004 Sep; 20(20):8846-52. PubMed ID: 15379516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of synthetic homo- and hetero-oligodeoxynucleotides onto highly oriented pyrolytic graphite: atomic force microscopy characterization.
    Chiorcea Paquim AM; Oretskaya TS; Oliveira Brett AM
    Biophys Chem; 2006 May; 121(2):131-41. PubMed ID: 16460874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of underlying octadecylamine monolayer on the DNA conformation on the graphite surface.
    Dubrovin EV; Gerritsen JW; Zivkovic J; Yaminsky IV; Speller S
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):63-9. PubMed ID: 19896810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ conformational analysis of fibrinogen adsorbed on Si surfaces.
    Tunc S; Maitz MF; Steiner G; Vázquez L; Pham MT; Salzer R
    Colloids Surf B Biointerfaces; 2005 May; 42(3-4):219-25. PubMed ID: 15893222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscope studies of fibrinogen adsorption.
    Averett LE; Schoenfisch MH
    Analyst; 2010 Jun; 135(6):1201-9. PubMed ID: 20498873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface structural conformations of fibrinogen polypeptides for improved biocompatibility.
    Yaseen M; Zhao X; Freund A; Seifalian AM; Lu JR
    Biomaterials; 2010 May; 31(14):3781-92. PubMed ID: 20153048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal Supramolecular Polymer Formation on Highly Oriented Pyrolytic Graphite (HOPG) Surfaces Characterized by Scanning Probe Microscopy.
    Gong Y; Zhang S; Geng Y; Niu C; Yin S; Zeng Q; Li M
    Langmuir; 2015 Oct; 31(42):11525-31. PubMed ID: 26457462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics of Fibrinogen Adsorption onto Graphene, but Not onto Poly(ethylene glycol) Surface, Increases Exposure of Recognition Sites That Trigger Immune Response.
    Dragneva N; Rubel O; Floriano WB
    J Chem Inf Model; 2016 Apr; 56(4):706-20. PubMed ID: 26966807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.