These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31282390)

  • 41. What We Can Learn from Artificial Lateral Line Sensor Arrays.
    Klein AT; Kaldenbach F; Rüter A; Bleckmann H
    Adv Exp Med Biol; 2016; 875():539-45. PubMed ID: 26611002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Artificial lateral line based relative state estimation between an upstream oscillating fin and a downstream robotic fish.
    Zheng X; Wang W; Li L; Xie G
    Bioinspir Biomim; 2020 Nov; 16(1):. PubMed ID: 32927443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
    Kim SH; Shin K; Hashi S; Ishiyama K
    Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lateral line system of fish.
    Bleckmann H; Zelick R
    Integr Zool; 2009 Mar; 4(1):13-25. PubMed ID: 21392273
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception.
    Hu X; Jiang Y; Ma Z; Xu Y; Zhang D
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817605
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi).
    Coombs S; Patton P
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Mar; 195(3):279-97. PubMed ID: 19137317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing.
    Kottapalli AG; Bora M; Asadnia M; Miao J; Venkatraman SS; Triantafyllou M
    Sci Rep; 2016 Jan; 6():19336. PubMed ID: 26763299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.
    Feng GH; Huang WL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():241-9. PubMed ID: 25491826
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Understanding Fish Linear Acceleration Using an Undulatory Biorobotic Model with Soft Fluidic Elastomer Actuated Morphing Median Fins.
    Wen L; Ren Z; Di Santo V; Hu K; Yuan T; Wang T; Lauder GV
    Soft Robot; 2018 Aug; 5(4):375-388. PubMed ID: 29634444
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies.
    Humphrey JA
    J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall.
    Windsor SP; Norris SE; Cameron SM; Mallinson GD; Montgomery JC
    J Exp Biol; 2010 Nov; 213(Pt 22):3819-31. PubMed ID: 21037061
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design considerations for an underwater soft-robot inspired from marine invertebrates.
    Krieg M; Sledge I; Mohseni K
    Bioinspir Biomim; 2015 Oct; 10(6):065004. PubMed ID: 26513603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimal Sensor Placement of the Artificial Lateral Line for Flow Parametric Identification.
    Xu D; Zhang Y; Tian J; Fan H; Xie Y; Dai W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207715
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish.
    Liu G; Wang A; Wang X; Liu P
    Appl Bionics Biomech; 2016; 2016():4732703. PubMed ID: 28115825
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep learning model inspired by lateral line system for underwater object detection.
    Jeong T; Yoo J; Kim D
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34847542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A multi-body dynamics based numerical modelling tool for solving aquatic biomimetic problems.
    Li R; Xiao Q; Liu Y; Hu J; Li L; Li G; Liu H; Hu K; Wen L
    Bioinspir Biomim; 2018 Jul; 13(5):056001. PubMed ID: 29916395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection.
    Gul JZ; Su KY; Choi KH
    Soft Robot; 2018 Apr; 5(2):122-132. PubMed ID: 29297780
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Form and function of the teleost lateral line revealed using three-dimensional imaging and computational fluid dynamics.
    Herzog H; Klein B; Ziegler A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28468922
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bending continuous structures with SMAs: a novel robotic fish design.
    Rossi C; Colorado J; Coral W; Barrientos A
    Bioinspir Biomim; 2011 Dec; 6(4):045005. PubMed ID: 22126900
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The functional significance of lateral line canal morphology on the trunk of the marine teleost Xiphister atropurpureus (Stichaeidae).
    Klein A; Münz H; Bleckmann H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Sep; 199(9):735-49. PubMed ID: 23824224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.