BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 31282472)

  • 1. Crystal structures of the naturally fused CS and cytochrome b
    Benson DR; Lovell S; Mehzabeen N; Galeva N; Cooper A; Gao P; Battaile KP; Zhu H
    Acta Crystallogr D Struct Biol; 2019 Jul; 75(Pt 7):628-638. PubMed ID: 31282472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain.
    Deng B; Parthasarathy S; Wang W; Gibney BR; Battaile KP; Lovell S; Benson DR; Zhu H
    J Biol Chem; 2010 Sep; 285(39):30181-91. PubMed ID: 20630863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer.
    Yamada M; Tamada T; Takeda K; Matsumoto F; Ohno H; Kosugi M; Takaba K; Shoyama Y; Kimura S; Kuroki R; Miki K
    J Mol Biol; 2013 Nov; 425(22):4295-306. PubMed ID: 23831226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal intrinsically disordered region of Ncb5or docks with the cytochrome b
    Benson DR; Deng B; Kashipathy MM; Lovell S; Battaile KP; Cooper A; Gao P; Fenton AW; Zhu H
    Proteins; 2024 Apr; 92(4):554-566. PubMed ID: 38041394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NCB5OR is a novel soluble NAD(P)H reductase localized in the endoplasmic reticulum.
    Zhu H; Larade K; Jackson TA; Xie J; Ladoux A; Acker H; Berchner-Pfannschmidt U; Fandrey J; Cross AR; Lukat-Rodgers GS; Rodgers KR; Bunn HF
    J Biol Chem; 2004 Jul; 279(29):30316-25. PubMed ID: 15131110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a cytochrome b-type NAD(P)H oxidoreductase ubiquitously expressed in human cells.
    Zhu H; Qiu H; Yoon HW; Huang S; Bunn HF
    Proc Natl Acad Sci U S A; 1999 Dec; 96(26):14742-7. PubMed ID: 10611283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5.
    Kollipara S; Tatireddy S; Pathirathne T; Rathnayake LK; Northrup SH
    J Phys Chem B; 2016 Aug; 120(33):8193-207. PubMed ID: 27059440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and enzymatic analysis of the cytochrome b
    You C; Liu C; Li Y; Jiang P; Ma Q
    Int J Biol Macromol; 2018 May; 111():1175-1182. PubMed ID: 29371148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome b5 and NADH cytochrome b5 reductase: genotype-phenotype correlations for hydroxylamine reduction.
    Sacco JC; Trepanier LA
    Pharmacogenet Genomics; 2010 Jan; 20(1):26-37. PubMed ID: 19997042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution studies of hydride transfer in the ferredoxin:NADP
    Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and Molecular Mechanism of a Novel Cytochrome
    Cui J; Chen H; Tang X; Zhang H; Chen YQ; Chen W
    J Agric Food Chem; 2022 Apr; 70(16):5186-5196. PubMed ID: 35416034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Reduction of Vertebrate Cytoglobins by the Cytochrome b
    Amdahl MB; Sparacino-Watkins CE; Corti P; Gladwin MT; Tejero J
    Biochemistry; 2017 Aug; 56(30):3993-4004. PubMed ID: 28671819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of valence electrons of the flavin cofactor in NADH-cytochrome b
    Takaba K; Takeda K; Kosugi M; Tamada T; Miki K
    Sci Rep; 2017 Feb; 7():43162. PubMed ID: 28225078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of carboxyl residues surrounding heme of human cytochrome b5 in the electrostatic interaction with NADH-cytochrome b5 reductase.
    Kawano M; Shirabe K; Nagai T; Takeshita M
    Biochem Biophys Res Commun; 1998 Apr; 245(3):666-9. PubMed ID: 9588172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tertiary structure of the heme-binding domain of rat cytochrome b5 based on homology modeling.
    Gill DS; Roush DJ; Willson RC
    J Biomol Struct Dyn; 1994 Apr; 11(5):1003-15. PubMed ID: 7946056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of NADH-cytochrome b5 reductase from pig liver at 2.4 A resolution.
    Nishida H; Inaka K; Yamanaka M; Kaida S; Kobayashi K; Miki K
    Biochemistry; 1995 Mar; 34(9):2763-7. PubMed ID: 7893687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5.
    Kurian JR; Chin NA; Longlais BJ; Hayes KL; Trepanier LA
    Chem Res Toxicol; 2006 Oct; 19(10):1366-73. PubMed ID: 17040106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: pyridine nucleotide-binding and interaction with an electron-transfer partner.
    Nishida H; Miki K
    Proteins; 1996 Sep; 26(1):32-41. PubMed ID: 8880927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.