These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31282513)

  • 1. Contribution of substrate reorganization energies of electron transfer to laccase activity.
    Mehra R; Kepp KP
    Phys Chem Chem Phys; 2019 Jul; 21(28):15805-15814. PubMed ID: 31282513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer and reaction mechanism of laccases.
    Jones SM; Solomon EI
    Cell Mol Life Sci; 2015 Mar; 72(5):869-83. PubMed ID: 25572295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular electron transfer in laccases.
    Farver O; Wherland S; Koroleva O; Loginov DS; Pecht I
    FEBS J; 2011 Sep; 278(18):3463-71. PubMed ID: 21790996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A structural-chemical explanation of fungal laccase activity.
    Mehra R; Muschiol J; Meyer AS; Kepp KP
    Sci Rep; 2018 Nov; 8(1):17285. PubMed ID: 30470810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between the T1 copper reduction potential and catalytic activity of a small laccase.
    Olbrich AC; Schild JN; Urlacher VB
    J Inorg Biochem; 2019 Dec; 201():110843. PubMed ID: 31536948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Halide binding and inhibition of laccase copper clusters: the role of reorganization energy.
    Kepp KP
    Inorg Chem; 2015 Jan; 54(2):476-83. PubMed ID: 25532722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks.
    Liu H; Zhu Y; Yang X; Lin Y
    Appl Microbiol Biotechnol; 2018 May; 102(9):4049-4061. PubMed ID: 29516147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications.
    Sitarz AK; Mikkelsen JD; Meyer AS
    Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One at a time: intramolecular electron-transfer kinetics in small laccase observed during turnover.
    Gupta A; Aartsma TJ; Canters GW
    J Am Chem Soc; 2014 Feb; 136(7):2707-10. PubMed ID: 24475776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a blue laccase from Lentinus tigrinus: evidences for intermediates in the molecular oxygen reductive splitting by multicopper oxidases.
    Ferraroni M; Myasoedova NM; Schmatchenko V; Leontievsky AA; Golovleva LA; Scozzafava A; Briganti F
    BMC Struct Biol; 2007 Sep; 7():60. PubMed ID: 17897461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic oxidation of manganese ions catalysed by laccase.
    Gorbacheva M; Morozova O; Shumakovich G; Streltsov A; Shleev S; Yaropolov A
    Bioorg Chem; 2009 Feb; 37(1):1-5. PubMed ID: 18976793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-site interactions enhances intramolecular electron transfer in Streptomyces coelicolor laccase.
    Farver O; Tepper AW; Wherland S; Canters GW; Pecht I
    J Am Chem Soc; 2009 Dec; 131(51):18226-7. PubMed ID: 19968274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse-radiolysis studies on the interaction of one-electron reduced species with blue oxidases. Reduction of native and type-2-copper-depleted Vietnamese-lacquer-tree and Japanese-lacquer-tree laccases.
    O'Neill P; Fielden EM; Morpurgo L; Agostinelli E
    Biochem J; 1984 Aug; 222(1):71-6. PubMed ID: 6089764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concerted electron/proton transfer mechanism in the oxidation of phenols by laccase.
    Galli C; Madzak C; Vadalà R; Jolivalt C; Gentili P
    Chembiochem; 2013 Dec; 14(18):2500-5. PubMed ID: 24151197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular insights into substrate promiscuity of CotA laccase catalyzing lignin-phenol derivatives.
    Li J; Liu Z; Zhao J; Wang G; Xie T
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128487. PubMed ID: 38042324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water by Steccherinum murashkinskyi laccase: insights into the reaction mechanism.
    Polyakov KM; Gavryushov S; Ivanova S; Fedorova TV; Glazunova OA; Popov AN; Koroleva OV
    Acta Crystallogr D Struct Biol; 2017 May; 73(Pt 5):388-401. PubMed ID: 28471364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative turnover increases the rate constant and extent of intramolecular electron transfer in the multicopper enzymes, ascorbate oxidase and laccase.
    Tollin G; Meyer TE; Cusanovich MA; Curir P; Marchesini A
    Biochim Biophys Acta; 1993 Dec; 1183(2):309-14. PubMed ID: 8268195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intramolecular Electron Transfer in the Bacterial Two-Domain Multicopper Oxidase mgLAC.
    Wherland S; Miyazaki K; Pecht I
    Biochemistry; 2016 May; 55(21):2960-6. PubMed ID: 27126506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition and oxygen activation in copper amine oxidases.
    Shepard EM; Dooley DM
    Acc Chem Res; 2015 May; 48(5):1218-26. PubMed ID: 25897668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.