These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 31282522)
1. Hydrodynamic mobility reversal of squirmers near flat and curved surfaces. Kuron M; Stärk P; Holm C; de Graaf J Soft Matter; 2019 Jul; 15(29):5908-5920. PubMed ID: 31282522 [TBL] [Abstract][Full Text] [Related]
2. A lattice Boltzmann model for squirmers. Kuron M; Stärk P; Burkard C; de Graaf J; Holm C J Chem Phys; 2019 Apr; 150(14):144110. PubMed ID: 30981238 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls. Lintuvuori JS; Brown AT; Stratford K; Marenduzzo D Soft Matter; 2016 Sep; 12(38):7959-7968. PubMed ID: 27714374 [TBL] [Abstract][Full Text] [Related]
4. Hydrodynamic interaction of microswimmers near a wall. Li GJ; Ardekani AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013010. PubMed ID: 25122372 [TBL] [Abstract][Full Text] [Related]
5. Hydrodynamic interactions between squirmers near walls: far-field dynamics and near-field cluster stability. Théry A; Maaß CC; Lauga E R Soc Open Sci; 2023 Jun; 10(6):230223. PubMed ID: 37388310 [TBL] [Abstract][Full Text] [Related]
6. Mesoscale simulations of hydrodynamic squirmer interactions. Götze IO; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327 [TBL] [Abstract][Full Text] [Related]
7. Near- and far-field hydrodynamic interaction of two chiral squirmers. Maity R; Burada PS Phys Rev E; 2022 Nov; 106(5-1):054613. PubMed ID: 36559415 [TBL] [Abstract][Full Text] [Related]
8. Clustering of microswimmers: interplay of shape and hydrodynamics. Theers M; Westphal E; Qi K; Winkler RG; Gompper G Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172 [TBL] [Abstract][Full Text] [Related]
9. Swimming Mode of Two Interacting Squirmers under Gravity in a Narrow Vertical Channel. Guan G; Lin J; Nie D Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359654 [TBL] [Abstract][Full Text] [Related]
10. Hydrodynamic interaction of a self-propelling particle with a wall : Comparison between an active Janus particle and a squirmer model. Shen Z; Würger A; Lintuvuori JS Eur Phys J E Soft Matter; 2018 Mar; 41(3):39. PubMed ID: 29594924 [TBL] [Abstract][Full Text] [Related]
11. Hydrodynamic Behavior of Self-Propelled Particles in a Simple Shear Flow. Qi T; Lin J; Ouyang Z Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885078 [TBL] [Abstract][Full Text] [Related]
12. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. Clopés J; Gompper G; Winkler RG Soft Matter; 2020 Dec; 16(47):10676-10687. PubMed ID: 33089276 [TBL] [Abstract][Full Text] [Related]
13. Hydrodynamics Defines the Stable Swimming Direction of Spherical Squirmers in a Nematic Liquid Crystal. Lintuvuori JS; Würger A; Stratford K Phys Rev Lett; 2017 Aug; 119(6):068001. PubMed ID: 28949617 [TBL] [Abstract][Full Text] [Related]
14. Effective squirmer models for self-phoretic chemically active spherical colloids. Popescu MN; Uspal WE; Eskandari Z; Tasinkevych M; Dietrich S Eur Phys J E Soft Matter; 2018 Dec; 41(12):145. PubMed ID: 30569319 [TBL] [Abstract][Full Text] [Related]
15. Stability of a Dumbbell Micro-Swimmer. Ishikawa T Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046 [TBL] [Abstract][Full Text] [Related]
16. Lattice Boltzmann study of chemically-driven self-propelled droplets. Fadda F; Gonnella G; Lamura A; Tiribocchi A Eur Phys J E Soft Matter; 2017 Dec; 40(12):112. PubMed ID: 29256179 [TBL] [Abstract][Full Text] [Related]
17. Understanding the onset of oscillatory swimming in microchannels. de Graaf J; Mathijssen AJ; Fabritius M; Menke H; Holm C; Shendruk TN Soft Matter; 2016 May; 12(21):4704-8. PubMed ID: 27184912 [TBL] [Abstract][Full Text] [Related]
18. Collective dynamics in a monolayer of squirmers confined to a boundary by gravity. Kuhr JT; Rühle F; Stark H Soft Matter; 2019 Jul; 15(28):5685-5694. PubMed ID: 31246219 [TBL] [Abstract][Full Text] [Related]
19. Colloidal swimmers near curved and structured walls. Das S; Cacciuto A Soft Matter; 2019 Oct; 15(41):8290-8301. PubMed ID: 31616894 [TBL] [Abstract][Full Text] [Related]
20. Collective behavior of squirmers in thin films. Wu-Zhang B; Fedosov DA; Gompper G Soft Matter; 2024 Jul; 20(29):5687-5702. PubMed ID: 38639062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]