These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31282522)

  • 41. Ultralow Friction of Steel Surfaces Using a 1,3-Diketone Lubricant in the Thin Film Lubrication Regime.
    Li K; Amann T; List M; Walter M; Moseler M; Kailer A; Rühe J
    Langmuir; 2015 Oct; 31(40):11033-9. PubMed ID: 26267214
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluid forces enhance the performance of an aspirant leader in self-organized living groups.
    De Rosis A
    PLoS One; 2014; 9(12):e114687. PubMed ID: 25501965
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise.
    Schaar K; Zöttl A; Stark H
    Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio.
    Liang H; Liu H; Chai Z; Shi B
    Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Moving charged particles in lattice Boltzmann-based electrokinetics.
    Kuron M; Rempfer G; Schornbaum F; Bauer M; Godenschwager C; Holm C; de Graaf J
    J Chem Phys; 2016 Dec; 145(21):214102. PubMed ID: 28799336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synchronization of rigid microrotors by time-dependent hydrodynamic interactions.
    Theers M; Winkler RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023012. PubMed ID: 24032929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrodynamic mobility of a solid particle near a spherical elastic membrane: Axisymmetric motion.
    Daddi-Moussa-Ider A; Gekle S
    Phys Rev E; 2017 Jan; 95(1-1):013108. PubMed ID: 28208420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions.
    Alarcón F; Valeriani C; Pagonabarraga I
    Soft Matter; 2017 Jan; 13(4):814-826. PubMed ID: 28066850
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hydrodynamic interactions between swimming microorganisms in a linearly density stratified fluid.
    More RV; Ardekani AM
    Phys Rev E; 2021 Jan; 103(1-1):013109. PubMed ID: 33601564
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Creeping motion of a solid particle inside a spherical elastic cavity
    Daddi-Moussa-Ider A; Löwen H; Gekle S
    Eur Phys J E Soft Matter; 2018 Sep; 41(9):104. PubMed ID: 30194679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Settling mode of a bottom-heavy squirmer in a narrow vessel.
    Tingting Q; Jianzhong L; Zhenyu O; Jue Z
    Soft Matter; 2023 Jan; 19(4):652-669. PubMed ID: 36597923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The raspberry model for hydrodynamic interactions revisited. I. Periodic arrays of spheres and dumbbells.
    Fischer LP; Peter T; Holm C; de Graaf J
    J Chem Phys; 2015 Aug; 143(8):084107. PubMed ID: 26328818
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward an Accurate Modeling of Hydrodynamic Effects on the Translational and Rotational Dynamics of Biomolecules in Many-Body Systems.
    Długosz M; Antosiewicz JM
    J Phys Chem B; 2015 Jul; 119(26):8425-39. PubMed ID: 26068580
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On the transition from boundary lubrication to hydrodynamic lubrication in soft contacts.
    Persson BN; Scaraggi M
    J Phys Condens Matter; 2009 May; 21(18):185002. PubMed ID: 21825448
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamics of rotating paramagnetic particles simulated by lattice Boltzmann and particle dynamics methods.
    Yadav A; Calhoun R; Phelan PE; Vuppu AK; Garcia AA; Hayes M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):145-50. PubMed ID: 17187446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dynamics near planar walls for various model self-phoretic particles.
    Bayati P; Popescu MN; Uspal WE; Dietrich S; Najafi A
    Soft Matter; 2019 Jul; 15(28):5644-5672. PubMed ID: 31245803
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Curvature estimation from a volume-of-fluid indicator function for the simulation of surface tension and wetting with a free-surface lattice Boltzmann method.
    Bogner S; Rüde U; Harting J
    Phys Rev E; 2016 Apr; 93():043302. PubMed ID: 27176423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.