These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31282656)

  • 21. A highly selective near-infrared fluorescent probe for carboxylesterase 2 and its bioimaging applications in living cells and animals.
    Jin Q; Feng L; Wang DD; Wu JJ; Hou J; Dai ZR; Sun SG; Wang JY; Ge GB; Cui JN; Yang L
    Biosens Bioelectron; 2016 Sep; 83():193-9. PubMed ID: 27129028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-Time Monitoring of Endogenous Cysteine Levels In Vivo by near-Infrared Turn-on Fluorescent Probe with Large Stokes Shift.
    Qi Y; Huang Y; Li B; Zeng F; Wu S
    Anal Chem; 2018 Jan; 90(1):1014-1020. PubMed ID: 29182316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The proprotein convertase furin in tumour progression.
    Jaaks P; Bernasconi M
    Int J Cancer; 2017 Aug; 141(4):654-663. PubMed ID: 28369813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-Infrared Fluorogenic Probes with Polarity-Sensitive Emission for in Vivo Imaging of an Ovarian Cancer Biomarker.
    Yao D; Lin Z; Wu J
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5847-56. PubMed ID: 26910257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging.
    Li Y; Sun Y; Li J; Su Q; Yuan W; Dai Y; Han C; Wang Q; Feng W; Li F
    J Am Chem Soc; 2015 May; 137(19):6407-16. PubMed ID: 25923361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activatable Near-Infrared Probe for Fluorescence Imaging of γ-Glutamyl Transpeptidase in Tumor Cells and In Vivo.
    Luo Z; Feng L; An R; Duan G; Yan R; Shi H; He J; Zhou Z; Ji C; Chen HY; Ye D
    Chemistry; 2017 Oct; 23(59):14778-14785. PubMed ID: 28653778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence and ratiometric photoacoustic imaging of endogenous furin activity
    Li X; Xiu W; Xiao H; Li Y; Yang K; Yuwen L; Yang D; Weng L; Wang L
    Biomater Sci; 2021 Dec; 9(24):8313-8322. PubMed ID: 34782897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The proprotein convertase furin in cancer: more than an oncogene.
    He Z; Khatib AM; Creemers JWM
    Oncogene; 2022 Feb; 41(9):1252-1262. PubMed ID: 34997216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth.
    Bassi DE; Zhang J; Renner C; Klein-Szanto AJ
    Mol Carcinog; 2017 Mar; 56(3):1182-1188. PubMed ID: 27584082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of the Translocation Domain and the Furin Cleavage Site Decreases the Relative Hepatotoxicity of the Targeted Antitumor Toxins.
    Khodarovich YM; Konovalova EV; Schulga AA; Deyev SM; Petrov RV
    Dokl Biochem Biophys; 2019 Nov; 489(1):370-372. PubMed ID: 32130602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Near-infrared fluorescence probe for hydrogen peroxide detection: design, synthesis, and application in living systems.
    Zhang J; Shi L; Li Z; Li D; Tian X; Zhang C
    Analyst; 2019 Jun; 144(11):3643-3648. PubMed ID: 31073567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe.
    Shi L; Yan C; Ma Y; Wang T; Guo Z; Zhu WH
    Chem Commun (Camb); 2019 Oct; 55(82):12308-12311. PubMed ID: 31556426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of prohepcidin processing and activity by the subtilisin-like proprotein convertases Furin, PC5, PACE4 and PC7.
    Scamuffa N; Basak A; Lalou C; Wargnier A; Marcinkiewicz J; Siegfried G; Chrétien M; Calvo F; Seidah NG; Khatib AM
    Gut; 2008 Nov; 57(11):1573-82. PubMed ID: 18664504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes.
    Zhao N; Zhang C; Zhao Y; Bai B; An J; Zhang H; Wu JB; Shi C
    Oncotarget; 2016 Aug; 7(35):57277-57289. PubMed ID: 27329598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal-Controlled Reporter for Cell-Surface Proteolytic Enzyme Activity Visualization.
    Cheong H; Kim J; Mu J; Zhang W; Li J; Yang H; Xing B
    Chembiochem; 2019 Feb; 20(4):561-567. PubMed ID: 30304583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a red-light emission hypoxia-sensitive two-photon fluorescent probe for in vivo nitroreductase imaging.
    Gebremedhin KH; Li Y; Yao Q; Xiao M; Gao F; Fan J; Du J; Long S; Peng X
    J Mater Chem B; 2019 Jan; 7(3):408-414. PubMed ID: 32254728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A small-molecule FRET reporter for the real-time visualization of cell-surface proteolytic enzyme functions.
    Mu J; Liu F; Rajab MS; Shi M; Li S; Goh C; Lu L; Xu QH; Liu B; Ng LG; Xing B
    Angew Chem Int Ed Engl; 2014 Dec; 53(52):14357-62. PubMed ID: 25348774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Far-red/near-infrared fluorescence light-up probes for specific in vitro and in vivo imaging of a tumour-related protein.
    Chen C; Hua Y; Hu Y; Fang Y; Ji S; Yang Z; Ou C; Kong D; Ding D
    Sci Rep; 2016 Mar; 6():23190. PubMed ID: 26984064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The proprotein convertases furin and PACE4 play a significant role in tumor progression.
    Bassi DE; Mahloogi H; Klein-Szanto AJ
    Mol Carcinog; 2000 Jun; 28(2):63-9. PubMed ID: 10900462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A near-infrared fluorescent probe for monitoring leucine aminopeptidase in living cells.
    Chai Y; Gao Y; Xiong H; Lv W; Yang G; Lu C; Nie J; Ma C; Chen Z; Ren J; Wang F
    Analyst; 2019 Jan; 144(2):463-467. PubMed ID: 30406798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.