These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 31282667)
41. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways. Bornscheuer UT; Kazlauskas RJ Angew Chem Int Ed Engl; 2004 Nov; 43(45):6032-40. PubMed ID: 15523680 [TBL] [Abstract][Full Text] [Related]
43. Evolutionary dynamics of enzymes. Demetrius L Protein Eng; 1995 Aug; 8(8):791-800. PubMed ID: 8637848 [TBL] [Abstract][Full Text] [Related]
44. Thermodynamics of Bioreactions. Held C; Sadowski G Annu Rev Chem Biomol Eng; 2016 Jun; 7():395-414. PubMed ID: 27276551 [TBL] [Abstract][Full Text] [Related]
45. Directed evolution: an approach to engineer enzymes. Kaur J; Sharma R Crit Rev Biotechnol; 2006; 26(3):165-99. PubMed ID: 16923533 [TBL] [Abstract][Full Text] [Related]
46. Designed evolution of enzymatic properties. Petrounia IP; Arnold FH Curr Opin Biotechnol; 2000 Aug; 11(4):325-30. PubMed ID: 10975451 [TBL] [Abstract][Full Text] [Related]
47. The nature of chemical innovation: new enzymes by evolution. Arnold FH Q Rev Biophys; 2015 Nov; 48(4):404-10. PubMed ID: 26537398 [TBL] [Abstract][Full Text] [Related]
48. Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods. Reetz MT; Prasad S; Carballeira JD; Gumulya Y; Bocola M J Am Chem Soc; 2010 Jul; 132(26):9144-52. PubMed ID: 20536132 [TBL] [Abstract][Full Text] [Related]
50. Catalytic promiscuity and the evolution of new enzymatic activities. O'Brien PJ; Herschlag D Chem Biol; 1999 Apr; 6(4):R91-R105. PubMed ID: 10099128 [TBL] [Abstract][Full Text] [Related]
51. Temperature effects on the catalytic activity of the D38E mutant of 3-oxo-Delta5-steroid isomerase: favorable enthalpies and entropies of activation relative to the nonenzymatic reaction catalyzed by acetate ion. Houck WJ; Pollack RM J Am Chem Soc; 2004 Dec; 126(50):16416-25. PubMed ID: 15600343 [TBL] [Abstract][Full Text] [Related]
52. Design of protein catalysts. Hilvert D Annu Rev Biochem; 2013; 82():447-70. PubMed ID: 23746259 [TBL] [Abstract][Full Text] [Related]
53. Perspectives on electrostatics and conformational motions in enzyme catalysis. Hanoian P; Liu CT; Hammes-Schiffer S; Benkovic S Acc Chem Res; 2015 Feb; 48(2):482-9. PubMed ID: 25565178 [TBL] [Abstract][Full Text] [Related]
54. On the Temperature Dependence of Enzyme-Catalyzed Rates. Arcus VL; Prentice EJ; Hobbs JK; Mulholland AJ; Van der Kamp MW; Pudney CR; Parker EJ; Schipper LA Biochemistry; 2016 Mar; 55(12):1681-8. PubMed ID: 26881922 [TBL] [Abstract][Full Text] [Related]
55. Thermodynamic Activity-Based Solvent Design for Bioreactions. Wangler A; Held C; Sadowski G Trends Biotechnol; 2019 Oct; 37(10):1038-1041. PubMed ID: 31160055 [TBL] [Abstract][Full Text] [Related]
56. A window into biocatalysis and biotransformations. Coward-Kelly G; Chen RR Biotechnol Prog; 2007; 23(1):52-4. PubMed ID: 17269670 [TBL] [Abstract][Full Text] [Related]
57. Characterization of Enzymatic Reactions Using ITC. Zambelli B Methods Mol Biol; 2019; 1964():251-266. PubMed ID: 30929248 [TBL] [Abstract][Full Text] [Related]
59. Strategies for the discovery and engineering of enzymes for biocatalysis. Davids T; Schmidt M; Böttcher D; Bornscheuer UT Curr Opin Chem Biol; 2013 Apr; 17(2):215-20. PubMed ID: 23523243 [TBL] [Abstract][Full Text] [Related]
60. The influence of protein dynamics on the success of computational enzyme design. Ruscio JZ; Kohn JE; Ball KA; Head-Gordon T J Am Chem Soc; 2009 Oct; 131(39):14111-5. PubMed ID: 19788332 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]