These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31282671)

  • 1. In Silico Prediction of Hemolytic Toxicity on the Human Erythrocytes for Small Molecules by Machine-Learning and Genetic Algorithm.
    Zheng S; Wang Y; Liu W; Chang W; Liang G; Xu Y; Lin F
    J Med Chem; 2020 Jun; 63(12):6499-6512. PubMed ID: 31282671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods.
    Zheng S; Wang Y; Liu H; Chang W; Xu Y; Lin F
    Chem Res Toxicol; 2019 Jun; 32(6):1014-1026. PubMed ID: 30915843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Prediction of Hemolytic Toxicity for Small Molecules and Their Potential Hemolytic Fragments by Machine Learning and Recursive Fragmentation Methods.
    Zheng S; Xiong J; Wang Y; Liang G; Xu Y; Lin F
    J Chem Inf Model; 2020 Jun; 60(6):3231-3245. PubMed ID: 32364718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VenomPred: A Machine Learning Based Platform for Molecular Toxicity Predictions.
    Galati S; Di Stefano M; Martinelli E; Macchia M; Martinelli A; Poli G; Tuccinardi T
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adverse drug reactions during ceftriaxone treatment can cause severe hemolysis.
    Liu W; Yu D
    Pediatr Allergy Immunol; 2014 Feb; 25(1):101-2. PubMed ID: 24118095
    [No Abstract]   [Full Text] [Related]  

  • 6. In silico prediction of potential drug-induced nephrotoxicity with machine learning methods.
    Gong Y; Teng D; Wang Y; Gu Y; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2022 Oct; 42(10):1639-1650. PubMed ID: 35429013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Prediction of Chemical Toxicity Profile Using Local Lazy Learning.
    Lu J; Zhang P; Zou XW; Zhao XQ; Cheng KG; Zhao YL; Bi Y; Zheng MY; Luo XM
    Comb Chem High Throughput Screen; 2017; 20(4):346-353. PubMed ID: 28215144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HAPPENN is a novel tool for hemolytic activity prediction for therapeutic peptides which employs neural networks.
    Timmons PB; Hewage CM
    Sci Rep; 2020 Jul; 10(1):10869. PubMed ID: 32616760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity.
    Hemmerich J; Troger F; Füzi B; F Ecker G
    Mol Inform; 2020 May; 39(5):e2000005. PubMed ID: 32108997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning-Based Modeling of Drug Toxicity.
    Lu J; Lu D; Fu Z; Zheng M; Luo X
    Methods Mol Biol; 2018; 1754():247-264. PubMed ID: 29536448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro hemolysis: guidance for the pharmaceutical scientist.
    Amin K; Dannenfelser RM
    J Pharm Sci; 2006 Jun; 95(6):1173-6. PubMed ID: 16639718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates.
    Pu L; Naderi M; Liu T; Wu HC; Mukhopadhyay S; Brylinski M
    BMC Pharmacol Toxicol; 2019 Jan; 20(1):2. PubMed ID: 30621790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure.
    Cruz Silva MM; Madeira VM; Almeida LM; Custódio JB
    Biochim Biophys Acta; 2000 Mar; 1464(1):49-61. PubMed ID: 10704919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HemoPred: a web server for predicting the hemolytic activity of peptides.
    Win TS; Malik AA; Prachayasittikul V; S Wikberg JE; Nantasenamat C; Shoombuatong W
    Future Med Chem; 2017 Mar; 9(3):275-291. PubMed ID: 28211294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemolytic effects of sodium selenite and mercuric chloride in human blood.
    Brandão R; Lara FS; Pagliosa LB; Soares FA; Rocha JB; Nogueira CW; Farina M
    Drug Chem Toxicol; 2005; 28(4):397-407. PubMed ID: 16298871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiquery Similarity Searching Models: An Alternative Approach for Predicting Hemolytic Activity from Peptide Sequence.
    Castillo-Mendieta K; Agüero-Chapin G; Marquez E; Perez-Castillo Y; Barigye SJ; Pérez-Cárdenas M; Peréz-Giménez F; Marrero-Ponce Y
    Chem Res Toxicol; 2024 Apr; 37(4):580-589. PubMed ID: 38501392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian molecular design with a chemical language model.
    Ikebata H; Hongo K; Isomura T; Maezono R; Yoshida R
    J Comput Aided Mol Des; 2017 Apr; 31(4):379-391. PubMed ID: 28281211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization.
    Podlewska S; Czarnecki WM; Kafel R; Bojarski AJ
    J Chem Inf Model; 2017 Feb; 57(2):133-147. PubMed ID: 28158942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico prediction of mitochondrial toxicity of chemicals using machine learning methods.
    Zhao P; Peng Y; Xu X; Wang Z; Wu Z; Li W; Tang Y; Liu G
    J Appl Toxicol; 2021 Oct; 41(10):1518-1526. PubMed ID: 33469990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxic Colors: The Use of Deep Learning for Predicting Toxicity of Compounds Merely from Their Graphic Images.
    Fernandez M; Ban F; Woo G; Hsing M; Yamazaki T; LeBlanc E; Rennie PS; Welch WJ; Cherkasov A
    J Chem Inf Model; 2018 Aug; 58(8):1533-1543. PubMed ID: 30063345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.