These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 31282860)
1. Large protein organelles form a new iron sequestration system with high storage capacity. Giessen TW; Orlando BJ; Verdegaal AA; Chambers MG; Gardener J; Bell DC; Birrane G; Liao M; Silver PA Elife; 2019 Jul; 8():. PubMed ID: 31282860 [TBL] [Abstract][Full Text] [Related]
2. Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments. He D; Hughes S; Vanden-Hehir S; Georgiev A; Altenbach K; Tarrant E; Mackay CL; Waldron KJ; Clarke DJ; Marles-Wright J Elife; 2016 Aug; 5():. PubMed ID: 27529188 [TBL] [Abstract][Full Text] [Related]
3. Dissecting the structural and functional roles of a putative metal entry site in encapsulated ferritins. Piergentili C; Ross J; He D; Gallagher KJ; Stanley WA; Adam L; Mackay CL; Baslé A; Waldron KJ; Clarke DJ; Marles-Wright J J Biol Chem; 2020 Nov; 295(46):15511-15526. PubMed ID: 32878987 [TBL] [Abstract][Full Text] [Related]
4. The encapsulin from Thermotoga maritima is a flavoprotein with a symmetry matched ferritin-like cargo protein. LaFrance BJ; Cassidy-Amstutz C; Nichols RJ; Oltrogge LM; Nogales E; Savage DF Sci Rep; 2021 Nov; 11(1):22810. PubMed ID: 34815415 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of the Myxococcus xanthus encapsulin and ferritin-like cargo system gives insight into its iron storage mechanism. Eren E; Wang B; Winkler DC; Watts NR; Steven AC; Wingfield PT Structure; 2022 Apr; 30(4):551-563.e4. PubMed ID: 35150605 [TBL] [Abstract][Full Text] [Related]
6. Redox-dependent structural changes in the Azotobacter vinelandii bacterioferritin: new insights into the ferroxidase and iron transport mechanism. Swartz L; Kuchinskas M; Li H; Poulos TL; Lanzilotta WN Biochemistry; 2006 Apr; 45(14):4421-8. PubMed ID: 16584178 [TBL] [Abstract][Full Text] [Related]
7. Eren E; Watts NR; Conway JF; Wingfield PT Proc Natl Acad Sci U S A; 2024 May; 121(21):e2400426121. PubMed ID: 38748579 [TBL] [Abstract][Full Text] [Related]
8. Bacterioferritin: Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization. Rivera M Acc Chem Res; 2017 Feb; 50(2):331-340. PubMed ID: 28177216 [TBL] [Abstract][Full Text] [Related]
9. Ferritin, cellular iron storage and regulation. Arosio P; Elia L; Poli M IUBMB Life; 2017 Jun; 69(6):414-422. PubMed ID: 28349628 [TBL] [Abstract][Full Text] [Related]
10. Concerted motions networking pores and distant ferroxidase centers enable bacterioferritin function and iron traffic. Yao H; Rui H; Kumar R; Eshelman K; Lovell S; Battaile KP; Im W; Rivera M Biochemistry; 2015 Mar; 54(8):1611-27. PubMed ID: 25640193 [TBL] [Abstract][Full Text] [Related]
11. The universal mechanism for iron translocation to the ferroxidase site in ferritin, which is mediated by the well conserved transit site. Masuda T; Goto F; Yoshihara T; Mikami B Biochem Biophys Res Commun; 2010 Sep; 400(1):94-9. PubMed ID: 20705053 [TBL] [Abstract][Full Text] [Related]
12. Mineralization in ferritin: an efficient means of iron storage. Chasteen ND; Harrison PM J Struct Biol; 1999 Jun; 126(3):182-94. PubMed ID: 10441528 [TBL] [Abstract][Full Text] [Related]
13. A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress. McHugh CA; Fontana J; Nemecek D; Cheng N; Aksyuk AA; Heymann JB; Winkler DC; Lam AS; Wall JS; Steven AC; Hoiczyk E EMBO J; 2014 Sep; 33(17):1896-911. PubMed ID: 25024436 [TBL] [Abstract][Full Text] [Related]
14. Structural Basis of Novel Iron-Uptake Route and Reaction Intermediates in Ferritins from Gram-Negative Bacteria. Kim S; Lee JH; Seok JH; Park YH; Jung SW; Cho AE; Lee C; Chung MS; Kim KH J Mol Biol; 2016 Dec; 428(24 Pt B):5007-5018. PubMed ID: 27777002 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for iron mineralization by bacterioferritin. Crow A; Lawson TL; Lewin A; Moore GR; Le Brun NE J Am Chem Soc; 2009 May; 131(19):6808-13. PubMed ID: 19391621 [TBL] [Abstract][Full Text] [Related]
16. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Marchetti A; Parker MS; Moccia LP; Lin EO; Arrieta AL; Ribalet F; Murphy ME; Maldonado MT; Armbrust EV Nature; 2009 Jan; 457(7228):467-70. PubMed ID: 19037243 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of iron mineralization in ferritins: one size does not fit all. Bradley JM; Moore GR; Le Brun NE J Biol Inorg Chem; 2014 Aug; 19(6):775-85. PubMed ID: 24748222 [TBL] [Abstract][Full Text] [Related]
18. Tyr25, Tyr58 and Trp133 of Escherichia coli bacterioferritin transfer electrons between iron in the central cavity and the ferroxidase centre. Bradley JM; Svistunenko DA; Moore GR; Le Brun NE Metallomics; 2017 Oct; 9(10):1421-1428. PubMed ID: 28914315 [TBL] [Abstract][Full Text] [Related]
19. The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans. Macedo S; Romão CV; Mitchell E; Matias PM; Liu MY; Xavier AV; LeGall J; Teixeira M; Lindley P; Carrondo MA Nat Struct Biol; 2003 Apr; 10(4):285-90. PubMed ID: 12627224 [TBL] [Abstract][Full Text] [Related]
20. The crystal structure of ferritin from Chlorobium tepidum reveals a new conformation of the 4-fold channel for this protein family. Arenas-Salinas M; Townsend PD; Brito C; Marquez V; Marabolli V; Gonzalez-Nilo F; Matias C; Watt RK; López-Castro JD; Domínguez-Vera J; Pohl E; Yévenes A Biochimie; 2014 Nov; 106():39-47. PubMed ID: 25079050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]