These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31282993)

  • 1. Optical clearing methods: An overview of the techniques used for the imaging of 3D spheroids.
    Costa EC; Silva DN; Moreira AF; Correia IJ
    Biotechnol Bioeng; 2019 Oct; 116(10):2742-2763. PubMed ID: 31282993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Step Fast Tissue Clearing of Thick Mouse Brain Tissue for Multi-Dimensional High-Resolution Imaging.
    Ryu Y; Kim Y; Lim HR; Kim HJ; Park BS; Kim JG; Park SJ; Ha CM
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyethylene glycol molecular weight influences the ClearT2 optical clearing method for spheroids imaging by confocal laser scanning microscopy.
    Costa EC; Moreira AF; de Melo-Diogo D; Correia IJ
    J Biomed Opt; 2018 May; 23(5):1-11. PubMed ID: 29752799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of
    Silva DN; Costa EC; Rodrigues CF; de Melo-Diogo D; Correia IJ; Moreira AF
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33383886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimised tissue clearing minimises distortion and destruction during tissue delipidation.
    Lee K; Lai HM; Soerensen MH; Hui ES; Ma VW; Cho WC; Ho YS; Chang RC
    Neuropathol Appl Neurobiol; 2021 Apr; 47(3):441-453. PubMed ID: 33107057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical coherence tomography complements confocal microscopy for investigation of multicellular tumour spheroids.
    Hari N; Patel P; Ross J; Hicks K; Vanholsbeeck F
    Sci Rep; 2019 Jul; 9(1):10601. PubMed ID: 31332221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of regional variation in tissue clearing efficiency using optical coherence tomography (OCT) and magnetic resonance imaging (MRI): A feasibility study.
    Baek K; Jung S; Lee J; Min E; Jung W; Cho H
    Sci Rep; 2019 Feb; 9(1):2923. PubMed ID: 30814611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Clearing Delivers Ultrasensitive Hyperspectral Dark-Field Imaging for Single-Cell Evaluation.
    Cui Y; Wang X; Ren W; Liu J; Irudayaraj J
    ACS Nano; 2016 Mar; 10(3):3132-43. PubMed ID: 26895095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seeing through Musculoskeletal Tissues: Improving In Situ Imaging of Bone and the Lacunar Canalicular System through Optical Clearing.
    Berke IM; Miola JP; David MA; Smith MK; Price C
    PLoS One; 2016; 11(3):e0150268. PubMed ID: 26930293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical clearing at cellular level.
    Kinnunen M; Bykov AV; Tuorila J; Haapalainen T; Karmenyan AV; Tuchin VV
    J Biomed Opt; 2014 Jul; 19(7):71409. PubMed ID: 24615672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical and chemical mechanisms of tissue optical clearing.
    Yu T; Zhu J; Li D; Zhu D
    iScience; 2021 Mar; 24(3):102178. PubMed ID: 33718830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging cellular spheroids with a single (selective) plane illumination microscope.
    Swoger J; Pampaloni F; Stelzer EH
    Cold Spring Harb Protoc; 2014 Jan; 2014(1):106-13. PubMed ID: 24371324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative metric for the comparative evaluation of optical clearing protocols for 3D multicellular spheroids.
    Diosdi A; Hirling D; Kovacs M; Toth T; Harmati M; Koos K; Buzas K; Piccinini F; Horvath P
    Comput Struct Biotechnol J; 2021; 19():1233-1243. PubMed ID: 33717421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerol-mediated nanostructure modification leading to improved transparency of porous polymeric scaffolds for high performance 3D cell imaging.
    Zhao S; Shen Z; Wang J; Li X; Zeng Y; Wang B; He Y; Du Y
    Biomacromolecules; 2014 Jul; 15(7):2521-31. PubMed ID: 24884229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy.
    Wei M; Shi L; Shen Y; Zhao Z; Guzman A; Kaufman LJ; Wei L; Min W
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6608-6617. PubMed ID: 30872474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Photon Microscopy Analysis of Gold Nanoparticle Uptake in 3D Cell Spheroids.
    Rane TD; Armani AM
    PLoS One; 2016; 11(12):e0167548. PubMed ID: 27936027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Considerations for using optical clearing techniques for 3D imaging of nanoparticle biodistribution.
    Arms L; Robson AL; Woldu A; Martin A; Palmer W; Flynn J; Hua S
    Int J Pharm; 2020 Oct; 588():119739. PubMed ID: 32783979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical clearing of skin using flash lamp-induced enhancement of epidermal permeability.
    Tuchin VV; Altshuler GB; Gavrilova AA; Pravdin AB; Tabatadze D; Childs J; Yaroslavsky IV
    Lasers Surg Med; 2006 Oct; 38(9):824-36. PubMed ID: 17044094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.