BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31282999)

  • 21. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors.
    Lu Y; Cheng YF; He XP; Guo XN; Zhang BR
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):73-80. PubMed ID: 21698486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved ethanol production of a newly isolated thermotolerant Saccharomyces cerevisiae strain after high-energy-pulse-electron beam.
    Zhang Q; Fu Y; Wang Y; Han J; Lv J; Wang S
    J Appl Microbiol; 2012 Feb; 112(2):280-8. PubMed ID: 22129196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs.
    Pereira FB; Guimarães PM; Teixeira JA; Domingues L
    Bioresour Technol; 2010 Oct; 101(20):7856-63. PubMed ID: 20627715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2.
    Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics and thermodynamics of ethanol production by a thermotolerant mutant of Saccharomyces cerevisiae in a microprocessor-controlled bioreactor.
    Rajoka MI; Ferhan M; Khalid AM
    Lett Appl Microbiol; 2005; 40(5):316-21. PubMed ID: 15836732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse.
    de Souza CJ; Costa DA; Rodrigues MQ; dos Santos AF; Lopes MR; Abrantes AB; dos Santos Costa P; Silveira WB; Passos FM; Fietto LG
    Bioresour Technol; 2012 Apr; 109():63-9. PubMed ID: 22285296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae.
    Stanley D; Fraser S; Chambers PJ; Rogers P; Stanley GA
    J Ind Microbiol Biotechnol; 2010 Feb; 37(2):139-49. PubMed ID: 19902282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of Transcription Factor ZNF1 of Glycolysis Improves Bioethanol Productivity under High Glucose Concentration and Enhances Acetic Acid Tolerance of Saccharomyces cerevisiae.
    Songdech P; Ruchala J; Semkiv MV; Jensen LT; Sibirny A; Ratanakhanokchai K; Soontorngun N
    Biotechnol J; 2020 Jul; 15(7):e1900492. PubMed ID: 32196937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Improvement of thermal adaptability and fermentation of industrial ethanologenic yeast by genomic DNA mutagenesis-based genetic recombination].
    Liu X; He X; Lu Y; Zhang B
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1049-56. PubMed ID: 22016989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel approach for the improvement of ethanol fermentation by Saccharomyces cerevisiae.
    Hou L; Cao X; Wang C
    Can J Microbiol; 2010 Jun; 56(6):495-500. PubMed ID: 20657620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production.
    Kumari R; Pramanik K
    J Biosci Bioeng; 2012 Dec; 114(6):622-9. PubMed ID: 22867797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and genomic elucidation of hybrid yeast with improved glucose-xylose co-fermentation at high temperature.
    Lin Y; Cai Y; Guo Y; Li X; Qi X; Qi Q; Wang Q
    FEMS Yeast Res; 2019 May; 19(3):. PubMed ID: 30776066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
    Wisselink HW; Toirkens MJ; del Rosario Franco Berriel M; Winkler AA; van Dijken JP; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2007 Aug; 73(15):4881-91. PubMed ID: 17545317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae.
    Yu Z; Zhang H
    Bioresour Technol; 2003 Oct; 90(1):95-100. PubMed ID: 12835064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae.
    Guimarães PM; Teixeira JA; Domingues L
    Biotechnol Lett; 2008 Nov; 30(11):1953-8. PubMed ID: 18575804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene.
    Ge XY; Xu Y; Chen X
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):345-52. PubMed ID: 23377879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.