BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 31283201)

  • 21. Cleaving the n,n triple bond: the transformation of dinitrogen to ammonia by nitrogenases.
    Lee CC; Ribbe MW; Hu Y
    Met Ions Life Sci; 2014; 14():147-76. PubMed ID: 25416394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A conformational equilibrium in the nitrogenase MoFe protein with an α-V70I amino acid substitution illuminates the mechanism of H
    Lukoyanov DA; Yang ZY; Shisler K; Peters JW; Raugei S; Dean DR; Seefeldt LC; Hoffman BM
    Faraday Discuss; 2023 Jul; 243(0):231-252. PubMed ID: 37021412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein?
    Lukoyanov D; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2010 Mar; 132(8):2526-7. PubMed ID: 20121157
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reactivity, Mechanism, and Assembly of the Alternative Nitrogenases.
    Jasniewski AJ; Lee CC; Ribbe MW; Hu Y
    Chem Rev; 2020 Jun; 120(12):5107-5157. PubMed ID: 32129988
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ENDOR Characterization of (N
    Yang H; Rittle J; Marts AR; Peters JC; Hoffman BM
    Inorg Chem; 2018 Oct; 57(19):12323-12330. PubMed ID: 30222330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of a key catalytic intermediate demonstrates that nitrogenase is activated by the reversible exchange of N₂ for H₂.
    Lukoyanov D; Yang ZY; Khadka N; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2015 Mar; 137(10):3610-5. PubMed ID: 25741750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Resolution ENDOR Spectroscopy Combined with Quantum Chemical Calculations Reveals the Structure of Nitrogenase Janus Intermediate E
    Hoeke V; Tociu L; Case DA; Seefeldt LC; Raugei S; Hoffman BM
    J Am Chem Soc; 2019 Jul; 141(30):11984-11996. PubMed ID: 31310109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane.
    Khadka N; Dean DR; Smith D; Hoffman BM; Raugei S; Seefeldt LC
    Inorg Chem; 2016 Sep; 55(17):8321-30. PubMed ID: 27500789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The One-Electron Reduced Active-Site FeFe-Cofactor of Fe-Nitrogenase Contains a Hydride Bound to a Formally Oxidized Metal-Ion Core.
    Lukoyanov DA; Harris DF; Yang ZY; Pérez-González A; Dean DR; Seefeldt LC; Hoffman BM
    Inorg Chem; 2022 Apr; 61(14):5459-5464. PubMed ID: 35357830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon substrate re-orders relative growth of a bacterium using Mo-, V-, or Fe-nitrogenase for nitrogen fixation.
    Luxem KE; Kraepiel AML; Zhang L; Waldbauer JR; Zhang X
    Environ Microbiol; 2020 Apr; 22(4):1397-1408. PubMed ID: 32090445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii.
    Lowe DJ; Fisher K; Thorneley RN; Vaughn SA; Burgess BK
    Biochemistry; 1989 Oct; 28(21):8460-6. PubMed ID: 2605195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitrogenase reactivity: effects of pH on substrate reduction and CO inhibition.
    Pham DN; Burgess BK
    Biochemistry; 1993 Dec; 32(49):13725-31. PubMed ID: 8257707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The energetics of N
    Siegbahn PEM; Wei WJ
    Phys Chem Chem Phys; 2024 Jan; 26(3):1684-1695. PubMed ID: 38126534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation.
    Hoffman BM; Dean DR; Seefeldt LC
    Acc Chem Res; 2009 May; 42(5):609-19. PubMed ID: 19267458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogenase: a draft mechanism.
    Hoffman BM; Lukoyanov D; Dean DR; Seefeldt LC
    Acc Chem Res; 2013 Feb; 46(2):587-95. PubMed ID: 23289741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteome Profiling of the Rhodobacter capsulatus Molybdenum Response Reveals a Role of IscN in Nitrogen Fixation by Fe-Nitrogenase.
    Hoffmann MC; Wagner E; Langklotz S; Pfänder Y; Hött S; Bandow JE; Masepohl B
    J Bacteriol; 2015 Dec; 198(4):633-43. PubMed ID: 26644433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metal substitution in the active site of nitrogenase MFe(7)S(9) (M = Mo(4+), V(3+), Fe(3+)).
    Lovell T; Torres RA; Han WG; Liu T; Case DA; Noodleman L
    Inorg Chem; 2002 Nov; 41(22):5744-53. PubMed ID: 12401079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cryo-annealing of Photoreduced CdS Quantum Dot-Nitrogenase MoFe Protein Complexes Reveals the Kinetic Stability of the E
    Vansuch GE; Mulder DW; Chica B; Ruzicka JL; Yang ZY; Pellows LM; Willis MA; Brown KA; Seefeldt LC; Peters JW; Dukovic G; King PW
    J Am Chem Soc; 2023 Oct; 145(39):21165-21169. PubMed ID: 37729189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Azotobacter vinelandii Nitrogenase Activity, Hydrogen Production, and Response to Oxygen Exposure.
    Natzke J; Noar J; Bruno-Bárcena JM
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915110
    [No Abstract]   [Full Text] [Related]  

  • 40. Expression of V-nitrogenase and Fe-nitrogenase in
    Chanderban M; Hill CA; Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2023 Sep; 89(9):e0103323. PubMed ID: 37695043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.