These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31283263)

  • 21. Position Measurement of a Levitated Nanoparticle via Interference with Its Mirror Image.
    Dania L; Heidegger K; Bykov DS; Cerchiari G; Araneda G; Northup TE
    Phys Rev Lett; 2022 Jul; 129(1):013601. PubMed ID: 35841571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optomechanics with levitated particles.
    Millen J; Monteiro TS; Pettit R; Vamivakas AN
    Rep Prog Phys; 2020 Feb; 83(2):026401. PubMed ID: 31825901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Doppler cooling a microsphere.
    Barker PF
    Phys Rev Lett; 2010 Aug; 105(7):073002. PubMed ID: 20868038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kovacs Memory Effect with an Optically Levitated Nanoparticle.
    Militaru A; Lasanta A; Frimmer M; Bonilla LL; Novotny L; Rica RA
    Phys Rev Lett; 2021 Sep; 127(13):130603. PubMed ID: 34623831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between an Optically Levitated Nanoparticle and Its Thermal Image: Internal Thermometry via Displacement Sensing.
    Agrenius T; Gonzalez-Ballestero C; Maurer P; Romero-Isart O
    Phys Rev Lett; 2023 Mar; 130(9):093601. PubMed ID: 36930923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cavity cooling a single charged levitated nanosphere.
    Millen J; Fonseca PZ; Mavrogordatos T; Monteiro TS; Barker PF
    Phys Rev Lett; 2015 Mar; 114(12):123602. PubMed ID: 25860743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles.
    Fonseca PZ; Aranas EB; Millen J; Monteiro TS; Barker PF
    Phys Rev Lett; 2016 Oct; 117(17):173602. PubMed ID: 27824467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle.
    Gieseler J; Deutsch B; Quidant R; Novotny L
    Phys Rev Lett; 2012 Sep; 109(10):103603. PubMed ID: 23005289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laser refrigeration of optically levitated sodium yttrium fluoride nanocrystals.
    Luntz-Martin DR; Felsted RG; Dadras S; Pauzauskie PJ; Vamivakas AN
    Opt Lett; 2021 Aug; 46(15):3797-3800. PubMed ID: 34329284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time optimal quantum control of mechanical motion at room temperature.
    Magrini L; Rosenzweig P; Bach C; Deutschmann-Olek A; Hofer SG; Hong S; Kiesel N; Kugi A; Aspelmeyer M
    Nature; 2021 Jul; 595(7867):373-377. PubMed ID: 34262213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Force-Gradient Sensing and Entanglement via Feedback Cooling of Interacting Nanoparticles.
    Rudolph H; Delić U; Aspelmeyer M; Hornberger K; Stickler BA
    Phys Rev Lett; 2022 Nov; 129(19):193602. PubMed ID: 36399739
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sub-Kelvin Feedback Cooling and Heating Dynamics of an Optically Levitated Librator.
    van der Laan F; Tebbenjohanns F; Reimann R; Vijayan J; Novotny L; Frimmer M
    Phys Rev Lett; 2021 Sep; 127(12):123605. PubMed ID: 34597065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using the transient trajectories of an optically levitated nanoparticle to characterize a stochastic Duffing oscillator.
    Flajšmanová J; Šiler M; Jedlička P; Hrubý F; Brzobohatý O; Filip R; Zemánek P
    Sci Rep; 2020 Sep; 10(1):14436. PubMed ID: 32879371
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advantages of coherent feedback for cooling quantum oscillators.
    Hamerly R; Mabuchi H
    Phys Rev Lett; 2012 Oct; 109(17):173602. PubMed ID: 23215186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revealing the Velocity Uncertainties of a Levitated Particle in the Quantum Ground State.
    Kamba M; Aikawa K
    Phys Rev Lett; 2023 Nov; 131(18):183602. PubMed ID: 37977629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics.
    Rashid M; Tufarelli T; Bateman J; Vovrosh J; Hempston D; Kim MS; Ulbricht H
    Phys Rev Lett; 2016 Dec; 117(27):273601. PubMed ID: 28084746
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Passive cooling of a micromechanical oscillator with a resonant electric circuit.
    Brown KR; Britton J; Epstein RJ; Chiaverini J; Leibfried D; Wineland DJ
    Phys Rev Lett; 2007 Sep; 99(13):137205. PubMed ID: 17930631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Burning and graphitization of optically levitated nanodiamonds in vacuum.
    Rahman AT; Frangeskou AC; Kim MS; Bose S; Morley GW; Barker PF
    Sci Rep; 2016 Feb; 6():21633. PubMed ID: 26898172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass measurement under medium vacuum in optically levitated nanoparticles based on Maxwell speed distribution law.
    Chen P; Li N; Chen X; Liang T; He P; Wang D; Hu H
    Opt Express; 2024 Jun; 32(12):21806-21819. PubMed ID: 38859526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid electro-optical trap for experiments with levitated particles in vacuum.
    Bykov DS; Meusburger M; Dania L; Northup TE
    Rev Sci Instrum; 2022 Jul; 93(7):073201. PubMed ID: 35922316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.