These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 31283293)

  • 21. Phonon-assisted decoherence in the production of polarization-entangled photons in a single semiconductor quantum dot.
    Hohenester U; Pfanner G; Seliger M
    Phys Rev Lett; 2007 Jul; 99(4):047402. PubMed ID: 17678402
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of ultraviolet entangled photons in a semiconductor.
    Edamatsu K; Oohata G; Shimizu R; Itoh T
    Nature; 2004 Sep; 431(7005):167-70. PubMed ID: 15356626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.
    Chen Y; Zhang J; Zopf M; Jung K; Zhang Y; Keil R; Ding F; Schmidt OG
    Nat Commun; 2016 Jan; 7():10387. PubMed ID: 26813326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electric field induced removal of the biexciton binding energy in a single quantum dot.
    Reimer ME; van Kouwen MP; Hidma AW; van Weert MH; Bakkers EP; Kouwenhoven LP; Zwiller V
    Nano Lett; 2011 Feb; 11(2):645-50. PubMed ID: 21226507
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect.
    Muller A; Fang W; Lawall J; Solomon GS
    Phys Rev Lett; 2009 Nov; 103(21):217402. PubMed ID: 20366067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Electrical Control of the Excitonic Fine Structure for a Quantum Dot in a Cavity.
    Ollivier H; Priya P; Harouri A; Sagnes I; Lemaître A; Krebs O; Lanco L; Lanzillotti-Kimura ND; Esmann M; Senellart P
    Phys Rev Lett; 2022 Jul; 129(5):057401. PubMed ID: 35960559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entanglement on demand through time reordering.
    Avron JE; Bisker G; Gershoni D; Lindner NH; Meirom EA; Warburton RJ
    Phys Rev Lett; 2008 Mar; 100(12):120501. PubMed ID: 18517847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.
    Huber D; Reindl M; Huo Y; Huang H; Wildmann JS; Schmidt OG; Rastelli A; Trotta R
    Nat Commun; 2017 May; 8():15506. PubMed ID: 28548081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Entanglement Swapping with Semiconductor-Generated Photons Violates Bell's Inequality.
    Zopf M; Keil R; Chen Y; Yang J; Chen D; Ding F; Schmidt OG
    Phys Rev Lett; 2019 Oct; 123(16):160502. PubMed ID: 31702338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polarization entangled photons from quantum dots embedded in nanowires.
    Huber T; Predojević A; Khoshnegar M; Dalacu D; Poole PJ; Majedi H; Weihs G
    Nano Lett; 2014 Dec; 14(12):7107-14. PubMed ID: 25395237
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of Polarization-Entangled Photons from Self-Assembled Quantum Dots in a Hybrid Quantum Photonic Chip.
    Jin T; Li X; Liu R; Ou W; Zhu Y; Wang X; Liu J; Huo Y; Ou X; Zhang J
    Nano Lett; 2022 Jan; 22(2):586-593. PubMed ID: 35025517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices.
    Trotta R; Wildmann JS; Zallo E; Schmidt OG; Rastelli A
    Nano Lett; 2014 Jun; 14(6):3439-44. PubMed ID: 24845369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An entangled-light-emitting diode.
    Salter CL; Stevenson RM; Farrer I; Nicoll CA; Ritchie DA; Shields AJ
    Nature; 2010 Jun; 465(7298):594-7. PubMed ID: 20520709
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Observation of strongly entangled photon pairs from a nanowire quantum dot.
    Versteegh MA; Reimer ME; Jöns KD; Dalacu D; Poole PJ; Gulinatti A; Giudice A; Zwiller V
    Nat Commun; 2014 Oct; 5():5298. PubMed ID: 25358656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beyond the Four-Level Model: Dark and Hot States in Quantum Dots Degrade Photonic Entanglement.
    Lehner BU; Seidelmann T; Undeutsch G; Schimpf C; Manna S; Gawełczyk M; Covre da Silva SF; Yuan X; Stroj S; Reiter DE; Axt VM; Rastelli A
    Nano Lett; 2023 Feb; 23(4):1409-1415. PubMed ID: 36745448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays.
    Trotta R; Martín-Sánchez J; Daruka I; Ortix C; Rastelli A
    Phys Rev Lett; 2015 Apr; 114(15):150502. PubMed ID: 25933298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability.
    Liu J; Su R; Wei Y; Yao B; Silva SFCD; Yu Y; Iles-Smith J; Srinivasan K; Rastelli A; Li J; Wang X
    Nat Nanotechnol; 2019 Jun; 14(6):586-593. PubMed ID: 31011221
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phonon-Assisted Two-Photon Interference from Remote Quantum Emitters.
    Reindl M; Jöns KD; Huber D; Schimpf C; Huo Y; Zwiller V; Rastelli A; Trotta R
    Nano Lett; 2017 Jul; 17(7):4090-4095. PubMed ID: 28557459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental methods of post-growth-tuning of the excitonic fine structure splitting in semiconductor quantum dots.
    Plumhof JD; Trotta R; Rastelli A; Schmidt OG
    Nanoscale Res Lett; 2012; 7(1):336. PubMed ID: 22726724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement and modification of biexciton-exciton time correlations.
    Huber T; Predojević A; Zoubi H; Jayakumar H; Solomon GS; Weihs G
    Opt Express; 2013 Apr; 21(8):9890-8. PubMed ID: 23609694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.