These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31283305)

  • 1. Density-Dependent Speed-up of Particle Transport in Channels.
    Misiunas K; Keyser UF
    Phys Rev Lett; 2019 May; 122(21):214501. PubMed ID: 31283305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nondecaying Hydrodynamic Interactions along Narrow Channels.
    Misiunas K; Pagliara S; Lauga E; Lister JR; Keyser UF
    Phys Rev Lett; 2015 Jul; 115(3):038301. PubMed ID: 26230830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Aggregation due to Combined Gravitational and Electrophoretic Motion.
    Wang H; Zeng S; Loewenberg M; Davis RH
    J Colloid Interface Sci; 1997 Mar; 187(1):213-20. PubMed ID: 9245330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamic collision between a microswimmer and a passive particle in a micro-channel.
    Purushothaman A; Thampi SP
    Soft Matter; 2021 Mar; 17(12):3380-3396. PubMed ID: 33644792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of nano-objects in narrow channels: influence of Brownian diffusion, confinement and particle nature.
    Liot O; Socol M; Garcia L; Thiéry J; Figarol A; Mingotaud AF; Joseph P
    J Phys Condens Matter; 2018 Jun; 30(23):234001. PubMed ID: 29701609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Brownian particles escaping a channel in single file.
    Locatelli E; Baldovin F; Orlandini E; Pierno M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022109. PubMed ID: 25768460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collective Motion of Repulsive Brownian Particles in Single-File Diffusion with and without Overtaking.
    Ooshida T; Goto S; Otsuki M
    Entropy (Basel); 2018 Aug; 20(8):. PubMed ID: 33265659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydrodynamic inter-particle interaction on the orbital motion of dielectric nanoparticles driven by an optical vortex.
    Tsuji T; Nakatsuka R; Nakajima K; Doi K; Kawano S
    Nanoscale; 2020 Mar; 12(12):6673-6690. PubMed ID: 32068212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillating collective motion of active rotors in confinement.
    Liu P; Zhu H; Zeng Y; Du G; Ning L; Wang D; Chen K; Lu Y; Zheng N; Ye F; Yang M
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):11901-11907. PubMed ID: 32430333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density Shock Waves in Confined Microswimmers.
    Tsang AC; Kanso E
    Phys Rev Lett; 2016 Jan; 116(4):048101. PubMed ID: 26871357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation of microparticles exposed to hydrodynamic forces in microfluidic conduits.
    Janča J; Halabalová V; Polášek V; Vašina M; Menshikova AY
    Anal Bioanal Chem; 2011 Feb; 399(4):1481-91. PubMed ID: 20835866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of Brownian particles in a narrow, slowly varying serpentine channel.
    Wang X; Drazer G
    J Chem Phys; 2015 Apr; 142(15):154114. PubMed ID: 25903873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entropic particle transport in periodic channels.
    Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM
    Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-file transport in periodic potentials: The Brownian asymmetric simple exclusion process.
    Lips D; Ryabov A; Maass P
    Phys Rev E; 2019 Nov; 100(5-1):052121. PubMed ID: 31869987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-velocity transport of nanoparticles through 1-D nanochannels at very large particle to channel diameter ratios.
    Vankrunkelsven S; Clicq D; Pappaert K; Baron GV; Desmet G
    Anal Chem; 2004 Jun; 76(11):3005-11. PubMed ID: 15167775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.
    Knoerzer M; Szydzik C; Tovar-Lopez FJ; Tang X; Mitchell A; Khoshmanesh K
    Electrophoresis; 2016 Feb; 37(4):645-57. PubMed ID: 26643028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic field around a Brownian particle.
    Keblinski P; Thomin J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):010502. PubMed ID: 16486111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-induced instability of phonons in 1D microfluidic crystals.
    Tsang ACH; Shelley MJ; Kanso E
    Soft Matter; 2018 Feb; 14(6):945-950. PubMed ID: 29319100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the potential landscape on the single-file diffusion through channels.
    Goldt SD; Terentjev EM
    J Chem Phys; 2014 Dec; 141(22):224901. PubMed ID: 25494767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screened hydrodynamic interaction in a narrow channel.
    Cui B; Diamant H; Lin B
    Phys Rev Lett; 2002 Oct; 89(18):188302. PubMed ID: 12398643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.