These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31283472)

  • 1. HerGePred: Heterogeneous Network Embedding Representation for Disease Gene Prediction.
    Yang K; Wang R; Liu G; Shu Z; Wang N; Zhang R; Yu J; Chen J; Li X; Zhou X
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1805-1815. PubMed ID: 31283472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HGPEC: a Cytoscape app for prediction of novel disease-gene and disease-disease associations and evidence collection based on a random walk on heterogeneous network.
    Le DH; Pham VH
    BMC Syst Biol; 2017 Jun; 11(1):61. PubMed ID: 28619054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous network embedding for identifying symptom candidate genes.
    Yang K; Wang N; Liu G; Wang R; Yu J; Zhang R; Chen J; Zhou X
    J Am Med Inform Assoc; 2018 Nov; 25(11):1452-1459. PubMed ID: 30357378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network.
    Le DH; Pham VH
    J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PrGeFNE: Predicting disease-related genes by fast network embedding.
    Xiang J; Zhang NR; Zhang JS; Lv XY; Li M
    Methods; 2021 Aug; 192():3-12. PubMed ID: 32610158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PmDNE: Prediction of miRNA-Disease Association Based on Network Embedding and Network Similarity Analysis.
    Li J; Liu Y; Zhang Z; Liu B; Wang Y
    Biomed Res Int; 2020; 2020():6248686. PubMed ID: 33354569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A network embedding model for pathogenic genes prediction by multi-path random walking on heterogeneous network.
    Xu B; Liu Y; Yu S; Wang L; Dong J; Lin H; Yang Z; Wang J; Xia F
    BMC Med Genomics; 2019 Dec; 12(Suppl 10):188. PubMed ID: 31865919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-Based Approaches for Disease-Gene Association Prediction Using Protein-Protein Interaction Networks.
    Kim Y; Park JH; Cho YR
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the disease causal genes based on heterogeneous network and multi-feature combination method.
    Wang L; Wu M; Wu Y; Zhang X; Li S; He M; Zhang F; Wang Y; Li J
    Comput Biol Chem; 2022 Apr; 97():107639. PubMed ID: 35217251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing an integrated gene similarity network for the identification of disease genes.
    Tian Z; Guo M; Wang C; Xing L; Wang L; Zhang Y
    J Biomed Semantics; 2017 Sep; 8(Suppl 1):32. PubMed ID: 29297379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random walk with restart on multiplex and heterogeneous biological networks.
    Valdeolivas A; Tichit L; Navarro C; Perrin S; Odelin G; Levy N; Cau P; Remy E; Baudot A
    Bioinformatics; 2019 Feb; 35(3):497-505. PubMed ID: 30020411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MOKPE: drug-target interaction prediction via manifold optimization based kernel preserving embedding.
    Binatlı OC; Gönen M
    BMC Bioinformatics; 2023 Jul; 24(1):276. PubMed ID: 37407927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Disease-Associated N7-Methylguanosine (m
    Huang Y; Wu Z; Lan W; Zhong C
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3173-3181. PubMed ID: 37294648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neighbor-favoring weight reinforcement to improve random walk-based disease gene prioritization.
    Le DH; Kwon YK
    Comput Biol Chem; 2013 Jun; 44():1-8. PubMed ID: 23434623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.