These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31283876)

  • 21. Synthesis of phenanthrene derivatives by intramolecular cyclization utilizing the [1,2]-phospha-Brook rearrangement catalyzed by a Brønsted base.
    Kondoh A; Aoki T; Terada M
    Chemistry; 2015 Sep; 21(36):12577-80. PubMed ID: 26303440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aluminyl derived ethene functionalization with heteroallenes, leading to an intramolecular ligand rearrangement.
    O'Reilly A; Gardiner MG; McMullin CL; Fulton JR; Coles MP
    Chem Commun (Camb); 2024 Jan; 60(7):881-884. PubMed ID: 38165276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanistic investigation on N → C
    Zhu L; Yuan H; Zhang J
    Org Biomol Chem; 2017 Nov; 15(43):9127-9138. PubMed ID: 29051939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen-Bond-Assisted Sequential Reaction of Silyl Glyoxylates: Stereoselective Synthesis of Silyl Enol Ethers.
    Zhu C; Han MY; Liang XX; Guan B; Li P; Wang L
    Org Lett; 2021 Jan; 23(1):54-59. PubMed ID: 33320686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the radical brook rearrangement. Reactivity of alpha-silyl alcohols, alpha-silyl alcohol nitrite esters, and beta-haloacylsilanes under radical-forming conditions.
    Paredes MD; Alonso R
    J Org Chem; 2000 Apr; 65(8):2292-304. PubMed ID: 10789438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient approach to 3,3-bissilyl carbonyl and enol derivatives via retro-[1,4] brook rearrangement of 3-silyl allyloxysilanes.
    Song Z; Lei Z; Gao L; Wu X; Li L
    Org Lett; 2010 Nov; 12(22):5298-301. PubMed ID: 21028787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-pot synthesis of 3-functionalized (
    Hayashi R; Narita Y; Sai M
    Org Biomol Chem; 2023 May; 21(20):4206-4209. PubMed ID: 37144448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concise Approach to Cyclohexyne and 1,2-Cyclohexadiene Precursors.
    Chari JV; Ippoliti FM; Garg NK
    J Org Chem; 2019 Mar; 84(6):3652-3655. PubMed ID: 30840455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of Propargylic Ethers by Gold-Mediated Reaction of Terminal Alkynes with Acetals.
    Furuta M; Sugiyama K; Yamaguchi M; Ueda H; Tokuyama H
    Chem Pharm Bull (Tokyo); 2019; 67(8):872-876. PubMed ID: 31366835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.
    Miura T; Tanaka T; Matsumoto K; Murakami M
    Chemistry; 2014 Dec; 20(49):16078-82. PubMed ID: 25345587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A simple Hückel model-driven strategy to overcome electronic barriers to retro-Brook silylation relevant to aryne and bisaryne precursor synthesis.
    Neal EA; Werling AYR; Jones CR
    Chem Commun (Camb); 2021 Feb; 57(13):1663-1666. PubMed ID: 33463642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of allenic/propargylic zirconium complexes and subsequent cross-coupling reactions: a facile synthesis of multisubstituted allenes.
    Zhang H; Fu X; Chen J; Wang E; Liu Y; Li Y
    J Org Chem; 2009 Dec; 74(24):9351-8. PubMed ID: 19921814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gold-Catalyzed Reaction of Propargyl Esters and Alkynylsilanes: Synthesis of Vinylallene Derivatives through a Twofold 1,2-Rearrangement.
    Bernardo O; González-Pelayo S; Fernández I; López LA
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25258-25262. PubMed ID: 34581473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cycloaddition-Retro-Electrocyclization Click Reaction of Amine End-Capped Oligoynes with Tetracyanoethylene.
    Pigulski B; Misiak K; Męcik P; Szafert S
    Chemistry; 2023 Dec; 29(69):e202302725. PubMed ID: 37702289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymer Skeletal Editing via Anionic Brook Rearrangements.
    Ratushnyy M; Zhukhovitskiy AV
    J Am Chem Soc; 2021 Nov; 143(43):17931-17936. PubMed ID: 34677972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Divergent Elementoboration: 1,3-Haloboration versus 1,1-Carboboration of Propargyl Esters.
    Wilkins LC; Soltani Y; Lawson JR; Slater B; Melen RL
    Chemistry; 2018 May; 24(29):7364-7368. PubMed ID: 29700863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EPR investigation of zinc/iodine exchange between propargyl iodides and diethylzinc: detection of propargyl radical by spin trapping.
    Maury J; Jammi S; Vibert F; Marque SR; Siri D; Feray L; Bertrand M
    J Org Chem; 2012 Oct; 77(20):9081-6. PubMed ID: 22950476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radical Brook Rearrangements: Concept and Recent Developments.
    Zhang Y; Chen JJ; Huang HM
    Angew Chem Int Ed Engl; 2022 Sep; 61(37):e202205671. PubMed ID: 35726968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantum mechanistic insights on aryl propargyl ether Claisen rearrangement.
    Srinivasadesikan V; Dai JK; Lee SL
    Org Biomol Chem; 2014 Jun; 12(24):4163-71. PubMed ID: 24827936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Copper-catalyzed enantioselective allylic alkylation of terminal alkyne pronucleophiles.
    Harada A; Makida Y; Sato T; Ohmiya H; Sawamura M
    J Am Chem Soc; 2014 Oct; 136(39):13932-9. PubMed ID: 25215542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.