These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 3128435)
1. [2',3'- and 5'-methyl analogs of uridine in the reaction of microbiologic transglycosylation]. Zinchenko AI; Baraĭ VN; Eroshevskaia LA; Beĭgel'man LN; Mikhaĭlov SN Dokl Akad Nauk SSSR; 1987; 297(3):731-4. PubMed ID: 3128435 [No Abstract] [Full Text] [Related]
2. Substrate specificity of uridine and purine nucleoside phosphorylases of the whole cells of Escherichia coli. Zintchenko AI; Eroshevskaya LA; Barai VN; Mikhailopulo IA Nucleic Acids Symp Ser; 1987; (18):137-40. PubMed ID: 3122186 [TBL] [Abstract][Full Text] [Related]
3. Defining a process operating window for the synthesis of 5-methyluridine by transglycosylation of guanosine and thymine. Gordon GE; Visser DF; Brady D; Raseroka N; Bode ML J Biotechnol; 2011 Jan; 151(1):108-13. PubMed ID: 21112359 [TBL] [Abstract][Full Text] [Related]
4. Recombinant bacterial cells as efficient biocatalysts for the production of nucleosides. Spoldi E; Ghisotti D; Calì S; Grisa M; Orsini G; Tonon G; Zuffi G Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):977-9. PubMed ID: 11563158 [TBL] [Abstract][Full Text] [Related]
5. [Regulatory mutants with regard to nucleoside catabolism genes in Escherichia coli K-12, produced by using F' strains]. Molchanova ES; Sukhodolets VV; Smirnov IuV Genetika; 1974; 10(10):101-9. PubMed ID: 4220048 [No Abstract] [Full Text] [Related]
6. Nucleoside transport systems in Escherichia coli K12: specificity and regulation. Munch-Petersen A; Mygind B J Cell Physiol; 1976 Dec; 89(4):551-9. PubMed ID: 827549 [TBL] [Abstract][Full Text] [Related]
7. Improved synthesis of 2'-deoxyadenosine and 5-methyluridine by Escherichia coli using an auto-induction system. Xiong J; Zhang W; Su J; Shangguan J; Lin Y; Yang Y; Zhang R; Xie L; Wang H World J Microbiol Biotechnol; 2012 Feb; 28(2):721-7. PubMed ID: 22806868 [TBL] [Abstract][Full Text] [Related]
8. Correlation of substrate-stabilization patterns with proposed mechanisms for three nucleoside phosphorylases. Krenitsky TA; Tuttle JV Biochim Biophys Acta; 1982 May; 703(2):247-9. PubMed ID: 6805517 [TBL] [Abstract][Full Text] [Related]
9. Uridine and purine nucleoside phosphorylase activity in human and rat heart. de Jong JW; Smoleński RT; Janssen M; Lachno DR; Zydowo MM; Tavenier M; Yacoub MH Adv Exp Med Biol; 1991; 309B():185-8. PubMed ID: 1781364 [No Abstract] [Full Text] [Related]
10. Overexpression of Escherichia coli genes encoding nucleoside phosphorylases in the pET/Bl21(DE3) system yields active recombinant enzymes. Esipov RS; Gurevich AI; Chuvikovsky DV; Chupova LA; Muravyova TI; Miroshnikov AI Protein Expr Purif; 2002 Feb; 24(1):56-60. PubMed ID: 11812223 [TBL] [Abstract][Full Text] [Related]
11. [Synthesis of 2-chloro-2'-deoxyadenosine by microbiological transglycosylation using a recombinant Escherichia coli strain]. Taran SA; Verevkina KN; Esikova TZ; Feofanov SA; Miroshnikov AI Prikl Biokhim Mikrobiol; 2008; 44(2):181-6. PubMed ID: 18669260 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Escherichia coli uridine phosphorylase by single-site mutagenesis. Oliva I; Zuffi G; Barile D; Orsini G; Tonon G; De Gioia L; Ghisotti D J Biochem; 2004 Apr; 135(4):495-9. PubMed ID: 15115774 [TBL] [Abstract][Full Text] [Related]
13. Formation and breakdown of uridine in ischemic hearts of rats and humans. Smoleński RT; de Jong JW; Janssen M; Lachno DR; Zydowo MM; Tavenier M; Huizer T; Yacoub MH J Mol Cell Cardiol; 1993 Jan; 25(1):67-74. PubMed ID: 8441182 [TBL] [Abstract][Full Text] [Related]
14. [Role of adenine nucleotides in regulating utilization of purine ribonucleosides by Escherichia coli K-12 mutants defective in purine nucleoside phosphorylase]. Livshits VA; Sukhodolets VV Genetika; 1973 Dec; 9(12):102-11. PubMed ID: 4377732 [No Abstract] [Full Text] [Related]
15. Immobilization and stabilization of recombinant multimeric uridine and purine nucleoside phosphorylases from Bacillus subtilis. Rocchietti S; Ubiali D; Terreni M; Albertini AM; Fernández-Lafuente R; Guisán JM; Pregnolato M Biomacromolecules; 2004; 5(6):2195-200. PubMed ID: 15530033 [TBL] [Abstract][Full Text] [Related]
16. [Escherichia coli K-12 mutants assimilating adenine via a new metabolic pathway]. Kocharian ShM; Kocharian AM; Meliksetian GO; Akopian ZhI Genetika; 1982; 18(6):906-15. PubMed ID: 6809533 [TBL] [Abstract][Full Text] [Related]
17. Uridine phosphorylase from Hymenolepis diminuta (Cestoda): kinetics and inhibition by pyrimidine nucleoside analogs. Drabikowska AK Acta Biochim Pol; 1996; 43(4):733-41. PubMed ID: 9104511 [TBL] [Abstract][Full Text] [Related]
18. Two-step efficient synthesis of 5-methyluridine via two thermostable nucleoside phosphorylase from Aeropyrum pernix. Zhu S; Ren L; Wang J; Zheng G; Tang P Bioorg Med Chem Lett; 2012 Mar; 22(5):2102-4. PubMed ID: 22325947 [TBL] [Abstract][Full Text] [Related]
19. Use of hydrated reversed micelles of surfactant in organic solvent for stabilization of individual oligomeric forms of uridine phosphorylase from Escherichia coli K-12. Burlakova AA; Kurganov BI; Chebotareva NA; Debabov VG Membr Cell Biol; 1997; 10(5):543-51. PubMed ID: 9225258 [TBL] [Abstract][Full Text] [Related]
20. Crystal structures of Escherichia coli uridine phosphorylase in two native and three complexed forms reveal basis of substrate specificity, induced conformational changes and influence of potassium. Caradoc-Davies TT; Cutfield SM; Lamont IL; Cutfield JF J Mol Biol; 2004 Mar; 337(2):337-54. PubMed ID: 15003451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]