These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 31284460)
1. Effect of Layer-Wise Varying Parameters on the Microstructure and Soundness of Selective Laser Melted INCONEL 718 Alloy. Wang X; Kang J; Wang T; Wu P; Feng T; Zheng L Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31284460 [TBL] [Abstract][Full Text] [Related]
2. A Comparative Analysis of Laser Additive Manufacturing of High Layer Thickness Pure Ti and Inconel 718 Alloy Materials Using Finite Element Method. Singh SN; Chowdhury S; Nirsanametla Y; Deepati AK; Prakash C; Singh S; Wu LY; Zheng HY; Pruncu C Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673267 [TBL] [Abstract][Full Text] [Related]
3. On the Role of ZrN Particles in the Microstructural Development in a Beta Titanium Alloy Processed by Laser Powder Bed Fusion. Chen X; Qiu C Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258223 [TBL] [Abstract][Full Text] [Related]
4. Correlation Between Microstructure and Tensile Properties of STS 316L and Inconel 718 Fabricated by Selective Laser Melting (SLM). Lee J; Lee M; Jung ID; Choe J; Yu JH; Kim S; Sung H J Nanosci Nanotechnol; 2020 Nov; 20(11):6807-6814. PubMed ID: 32604518 [TBL] [Abstract][Full Text] [Related]
5. Study on the Effect of Inter-Layer Cooling Time on Porosity and Melt Pool in Inconel 718 Components Processed by Laser Powder Bed Fusion. Baldi N; Giorgetti A; Palladino M; Giovannetti I; Arcidiacono G; Citti P Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297054 [TBL] [Abstract][Full Text] [Related]
6. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384 [TBL] [Abstract][Full Text] [Related]
7. Machinability of INCONEL718 Alloy with a Porous Microstructure Produced by Laser Melting Powder Bed Fusion at Higher Energy Densities. Wood P; Díaz-Álvarez A; Díaz-Álvarez J; Miguélez MH; Rusinek A; Gunputh UF; Williams G; Bahi S; Sienkiewicz J; Płatek P Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33334067 [TBL] [Abstract][Full Text] [Related]
8. Texture and Microstructural Features at Different Length Scales in Inconel 718 Produced by Selective Laser Melting. Calandri M; Yin S; Aldwell B; Calignano F; Lupoi R; Ugues D Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010189 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical Microstructure of Laser Powder Bed Fusion Produced Face-Centered-Cubic-Structured Equiatomic CrFeNiMn Multicomponent Alloy. Yang X; Ge Y; Lehtonen J; Hannula SP Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33050607 [TBL] [Abstract][Full Text] [Related]
10. Effect of process parameters on microstructures and properties of Al-42Si alloy fabricated by selective laser melting. Cai X; Liu T; Yan X; Cheng Z; Pan L; Tian Z; Luo L; Su Y Heliyon; 2022 Jun; 8(6):e09680. PubMed ID: 35711975 [TBL] [Abstract][Full Text] [Related]
11. Research on High Layer Thickness Fabricated of 316L by Selective Laser Melting. Wang S; Liu Y; Shi W; Qi B; Yang J; Zhang F; Han D; Ma Y Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28885596 [TBL] [Abstract][Full Text] [Related]
12. Very-High-Cycle Fatigue Behavior of Inconel 718 Alloy Fabricated by Selective Laser Melting at Elevated Temperature. Song Z; Gao W; Wang D; Wu Z; Yan M; Huang L; Zhang X Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672597 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated Finite Element and Cellular Automaton Approach. Ansari Dezfoli AR; Lo YL; Raza MM Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576428 [TBL] [Abstract][Full Text] [Related]
14. Effect of Hot Isostatic Pressing on Porosity and Mechanical Properties of 316 L Stainless Steel Prepared by the Selective Laser Melting Method. Cegan T; Pagac M; Jurica J; Skotnicova K; Hajnys J; Horsak L; Soucek K; Krpec P Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33019587 [TBL] [Abstract][Full Text] [Related]
15. In-situ development of a sandwich microstructure with enhanced ductility by laser reheating of a laser melted titanium alloy. Chen X; Qiu C Sci Rep; 2020 Sep; 10(1):15870. PubMed ID: 32985532 [TBL] [Abstract][Full Text] [Related]
16. Mesoscopic Simulation of Core-Shell Composite Powder Materials by Selective Laser Melting. Bao T; Tan Y; Xu Y Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959603 [TBL] [Abstract][Full Text] [Related]
17. On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties. Trevisan F; Calignano F; Lorusso M; Pakkanen J; Aversa A; Ambrosio EP; Lombardi M; Fino P; Manfredi D Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772436 [TBL] [Abstract][Full Text] [Related]
18. The Thermo-Mechanical Coupling Effect in Selective Laser Melting of Aluminum Alloy Powder. Duan X; Chen X; Zhu K; Long T; Huang S; Jerry FYH Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33805355 [TBL] [Abstract][Full Text] [Related]