These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 31284537)

  • 41. Polygonum multiflorum Decreases Airway Allergic Symptoms in a Murine Model of Asthma.
    Lee CC; Lee YL; Wang CN; Tsai HC; Chiu CL; Liu LF; Lin HY; Wu R
    Am J Chin Med; 2016; 44(1):133-47. PubMed ID: 26916919
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New immunological approaches and cytokine targets in asthma and allergy.
    Stirling RG; Chung KF
    Eur Respir J; 2000 Dec; 16(6):1158-74. PubMed ID: 11292123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anti-IL-4/-13 based therapy in asthma.
    Walsh GM
    Expert Opin Emerg Drugs; 2015 Sep; 20(3):349-52. PubMed ID: 26021492
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging monoclonal antibodies as targeted innovative therapeutic approaches to asthma.
    Mitchell PD; El-Gammal AI; O'Byrne PM
    Clin Pharmacol Ther; 2016 Jan; 99(1):38-48. PubMed ID: 26502193
    [TBL] [Abstract][Full Text] [Related]  

  • 45. BuShenYiQi Formula strengthens Th1 response and suppresses Th2-Th17 responses in RSV-induced asthma exacerbated mice.
    Wang J; Wu J; Kong L; Nurahmat M; Chen M; Luo Q; Li B; Wu X; Dong J
    J Ethnopharmacol; 2014 May; 154(1):131-47. PubMed ID: 24704667
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aqueous extracts from Uncaria tomentosa (Willd. ex Schult.) DC. reduce bronchial hyperresponsiveness and inflammation in a murine model of asthma.
    Azevedo BC; Morel LJF; Carmona F; Cunha TM; Contini SHT; Delprete PG; Ramalho FS; Crevelin E; Bertoni BW; França SC; Borges MC; Pereira AMS
    J Ethnopharmacol; 2018 May; 218():76-89. PubMed ID: 29432856
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Knowledge of inflammatory cytokines and mediators in asthma: what is its importance in clinical practice?
    Nardini S
    Monaldi Arch Chest Dis; 1997 Feb; 52(1):86-8. PubMed ID: 9151532
    [No Abstract]   [Full Text] [Related]  

  • 48. From phenotypes to endotypes to asthma treatment.
    Agache IO
    Curr Opin Allergy Clin Immunol; 2013 Jun; 13(3):249-56. PubMed ID: 23587683
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inflammation, inflammatory mediators, and mediator antagonists in asthma.
    Lazarus SC
    J Clin Pharmacol; 1998 Jul; 38(7):577-82. PubMed ID: 9702841
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The safety of monoclonal antibodies in asthma.
    Passalacqua G; Matucci A; Vultaggio A; Bagnasco D; Mincarini M; Maggi E; Canonica GW
    Expert Opin Drug Saf; 2016 Aug; 15(8):1087-95. PubMed ID: 27215447
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: the next steps toward personalized care.
    Fajt ML; Wenzel SE
    J Allergy Clin Immunol; 2015 Feb; 135(2):299-310; quiz 311. PubMed ID: 25662302
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oleanolic acid suppresses ovalbumin-induced airway inflammation and Th2-mediated allergic asthma by modulating the transcription factors T-bet, GATA-3, RORγt and Foxp3 in asthmatic mice.
    Kim SH; Hong JH; Lee YC
    Int Immunopharmacol; 2014 Feb; 18(2):311-24. PubMed ID: 24374304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dosha phenotype specific Ayurveda intervention ameliorates asthma symptoms through cytokine modulations: Results of whole system clinical trial.
    Joshi KS; Nesari TM; Dedge AP; Dhumal VR; Shengule SA; Gadgil MS; Salvi S; Valiathan MV
    J Ethnopharmacol; 2017 Feb; 197():110-117. PubMed ID: 27473604
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma.
    Chung MJ; Pandey RP; Choi JW; Sohng JK; Choi DJ; Park YI
    Int Immunopharmacol; 2015 Apr; 25(2):302-10. PubMed ID: 25698556
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new compound, 1H,8H-pyrano[3,4-c]pyran-1,8-dione, suppresses airway epithelial cell inflammatory responses in a murine model of asthma.
    Lee H; Han AR; Kim Y; Choi SH; Ko E; Lee NY; Jeong JH; Kim SH; Bae H
    Int J Immunopathol Pharmacol; 2009; 22(3):591-603. PubMed ID: 19822076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The treatment targets of asthma: from laboratory to clinic.
    Fang C; Corrigan CJ; Ying S
    Inflamm Allergy Drug Targets; 2008 Jun; 7(2):119-28. PubMed ID: 18691142
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cortex Mori Radicis extract exerts antiasthmatic effects via enhancement of CD4(+)CD25(+)Foxp3(+) regulatory T cells and inhibition of Th2 cytokines in a mouse asthma model.
    Kim HJ; Lee HJ; Jeong SJ; Lee HJ; Kim SH; Park EJ
    J Ethnopharmacol; 2011 Oct; 138(1):40-6. PubMed ID: 21875661
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytokines or their antagonists for the treatment of asthma.
    O'Byrne PM
    Chest; 2006 Jul; 130(1):244-50. PubMed ID: 16840409
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prospects for Monoclonal Antibody Therapy in Pediatric Asthma.
    Generoso A; Muglia-Chopra C; Oppenheimer J
    Curr Allergy Asthma Rep; 2018 Jul; 18(9):45. PubMed ID: 29992472
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advances in immunopharmacology of asthma.
    Wong WS; Koh DS
    Biochem Pharmacol; 2000 Jun; 59(11):1323-35. PubMed ID: 10751541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.