These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31284548)

  • 1. Mechanism of the Intermediary Phase Formation in Ti-20 wt. % Al Mixture during Pressureless Reactive Sintering.
    Školáková A; Salvetr P; Novák P; Leitner J; Deduytsche D
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31284548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Phases in Reactively Sintered TiAl
    Školáková A; Salvetr P; Leitner J; Lovaši T; Novák P
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32326158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ synchrotron research of phase formation in mechanically activated 3Ti + Al powder composition during high-temperature synthesis under the condition of heating with high-frequency electromagnetic fields.
    Loginova M; Sobachkin A; Sitnikov A; Yakovlev V; Filimonov V; Myasnikov A; Sharafutdinov M; Tolochko B
    J Synchrotron Radiat; 2019 Mar; 26(Pt 2):422-429. PubMed ID: 30855251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive Sintering Mechanism and Phase Formation in Ni-Ti-Al Powder Mixture During Heating.
    Salvetr P; Školáková A; Hudrisier C; Novák P; Vojtěch D
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29702609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-Dependent Structural Properties of a High-Nb TiAl Alloy Powder.
    Liu B; Wang M; Du Y; Li J
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spark Plasma Sintering Behavior of Nb-Mo-Si Alloy Powders Fabricated by Hydrogenation-Dehydrogenation Method.
    Lee SY; Park KB; Kang JW; Kim Y; Kang HS; Ha TK; Min SH; Park HK
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Production of a New FeCoNiCrAlCu High-Entropy Alloy: Influence of Powder Production Method on Sintering.
    Reverte E; Calvo-Dahlborg M; Dahlborg U; Campos M; Alvaredo P; Martin-Rodriguez P; Gordo E; Cornide J
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructural Characterization of AlCrCuFeMnNi Complex Concentrated Alloy Prepared by Pressureless Sintering.
    Silva T; Lopes A
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of Al
    Yang ZR; Qi Wang S; Cui XH; Zhao YT; Gao MJ; Wei MX
    Sci Technol Adv Mater; 2008 Jul; 9(3):035005. PubMed ID: 27878002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.
    Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Titanium Alloy Obtained by Powder Metallurgy.
    Pascu CI; Nicolicescu C; Cioateră N; Gheorghe Ș; Geonea I; Didu A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of annealing temperature on the properties of powder metallurgy processed Ti-35Nb-2Zr-0.5O alloy.
    Málek J; Hnilica F; Veselý J; Smola B; Medlín R
    J Mech Behav Biomed Mater; 2017 Nov; 75():252-261. PubMed ID: 28756286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructural Evolution and Mechanical Properties of an Advanced γ-TiAl Based Alloy Processed by Spark Plasma Sintering.
    Wimler D; Lindemann J; Clemens H; Mayer S
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation Mechanism of High-Purity Ti
    Chen W; Tang J; Lin X; Ai Y; Ye N
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing and Characterization of β Titanium Alloy Composite Using Power Metallurgy Approach.
    Zyguła K; Wojtaszek M
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchrotron in situ studies of mechanical activation treatment and γ-radiation impact on structural-phase transitions and high-temperature synthesis parameters during the formation of γ-(TiAl) compound.
    Loginova M; Sobachkin A; Sitnikov A; Yakovlev V; Filimonov V; Myasnikov A; Sharafutdinov M; Tolochko B; Gradoboev A
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1671-1678. PubMed ID: 31490158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.
    Bolzoni L; Esteban PG; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2012 Nov; 15():33-45. PubMed ID: 23026730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties Comparison of Ti-Al-Si Alloys Produced by Various Metallurgy Methods.
    Knaislová A; Novák P; Kopeček J; Průša F
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31546647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.
    Knaislová A; Novák P; Cygan S; Jaworska L; Cabibbo M
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application.
    Karre R; Kodli BK; Rajendran A; J N; Pattanayak DK; Ameyama K; Dey SR
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():619-627. PubMed ID: 30423747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.