These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31284601)

  • 1. Transcriptional Analysis of the Early Ripening of 'Kyoho' Grape in Response to the Treatment of Riboflavin.
    Wang ZG; Guo LL; Ji XR; Yu YH; Zhang GH; Guo DL
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31284601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative RNA-Seq profiling of berry development between table grape 'Kyoho' and its early-ripening mutant 'Fengzao'.
    Guo DL; Xi FF; Yu YH; Zhang XY; Zhang GH; Zhong GY
    BMC Genomics; 2016 Oct; 17(1):795. PubMed ID: 27729006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNA profiling analysis of developing berries for 'Kyoho' and its early-ripening mutant during berry ripening.
    Guo DL; Li Q; Lv WQ; Zhang GH; Yu YH
    BMC Plant Biol; 2018 Nov; 18(1):285. PubMed ID: 30445920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profiling of 'Kyoho' grape at different stages of berry development following 5-azaC treatment.
    Guo DL; Li Q; Ji XR; Wang ZG; Yu YH
    BMC Genomics; 2019 Nov; 20(1):825. PubMed ID: 31703618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of reactive oxygen species metabolism during grape berry development between 'Kyoho' and its early ripening bud mutant 'Fengzao'.
    Xi FF; Guo LL; Yu YH; Wang Y; Li Q; Zhao HL; Zhang GH; Guo DL
    Plant Physiol Biochem; 2017 Sep; 118():634-642. PubMed ID: 28806719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis reveals mechanism of early ripening in Kyoho grape with hydrogen peroxide treatment.
    Guo DL; Wang ZG; Pei MS; Guo LL; Yu YH
    BMC Genomics; 2020 Nov; 21(1):784. PubMed ID: 33176674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome profiling and identification of the functional genes involved in berry development and ripening in Vitis vinifera.
    Ma Q; Yang J
    Gene; 2019 Jan; 680():84-96. PubMed ID: 30257181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening.
    Ghan R; Petereit J; Tillett RL; Schlauch KA; Toubiana D; Fait A; Cramer GR
    BMC Plant Biol; 2017 May; 17(1):94. PubMed ID: 28558655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gibberellin causes wide transcriptional modifications in the early stage of grape cluster development.
    Shiri Y; Solouki M; Ebrahimie E; Emamjomeh A; Zahiri J
    Genomics; 2020 Jan; 112(1):820-830. PubMed ID: 31136791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages.
    Leng F; Lin Q; Wu D; Wang S; Wang D; Sun C
    Molecules; 2016 Oct; 21(11):. PubMed ID: 27801843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening.
    Cramer GR; Cochetel N; Ghan R; Destrac-Irvine A; Delrot S
    BMC Plant Biol; 2020 Jan; 20(1):41. PubMed ID: 31992236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size.
    Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD
    BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA sequencing reveals high resolution expression change of major plant hormone pathway genes after young seedless grape berries treated with gibberellin.
    Chai L; Li Y; Chen S; Perl A; Zhao F; Ma H
    Plant Sci; 2014 Dec; 229():215-224. PubMed ID: 25443848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GA
    Upadhyay A; Maske S; Jogaiah S; Kadoo NY; Gupta VS
    Funct Integr Genomics; 2018 Jul; 18(4):439-455. PubMed ID: 29626310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demethylation alters transcriptome profiling of buds and leaves in 'Kyoho' grape.
    Jia H; Zhang Z; Sadeghnezhad E; Pang Q; Li S; Pervaiz T; Su Z; Dong T; Fang J; Jia H
    BMC Plant Biol; 2020 Dec; 20(1):544. PubMed ID: 33276735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase.
    Chervin C; Tira-Umphon A; Terrier N; Zouine M; Severac D; Roustan JP
    Physiol Plant; 2008 Nov; 134(3):534-46. PubMed ID: 18785902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of three expansin genes during development and maturation of Kyoho grape berries.
    Ishimaru M; Smith DL; Gross KC; Kobayashi S
    J Plant Physiol; 2007 Dec; 164(12):1675-82. PubMed ID: 17175064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iso-Seq Allows Genome-Independent Transcriptome Profiling of Grape Berry Development.
    Minio A; Massonnet M; Figueroa-Balderas R; Vondras AM; Blanco-Ulate B; Cantu D
    G3 (Bethesda); 2019 Mar; 9(3):755-767. PubMed ID: 30642874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of VvSPL18 and Its Expression in Response to Exogenous Hormones during Grape Berry Development and Ripening.
    Xie Z; Su Z; Wang W; Guan L; Bai Y; Zhu X; Wang X; Jia H; Fang J; Wang C
    Cytogenet Genome Res; 2019; 159(2):97-108. PubMed ID: 31760391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers.
    Cheng C; Jiao C; Singer SD; Gao M; Xu X; Zhou Y; Li Z; Fei Z; Wang Y; Wang X
    BMC Genomics; 2015 Feb; 16(1):128. PubMed ID: 25888129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.