BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 31284619)

  • 1. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy.
    Taborri J; Scalona E; Palermo E; Rossi S; Cappa P
    Sensors (Basel); 2015 Sep; 15(9):24514-29. PubMed ID: 26404309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait phase detection and discrimination between walking-jogging activities using hidden Markov models applied to foot motion data from a gyroscope.
    Mannini A; Sabatini AM
    Gait Posture; 2012 Sep; 36(4):657-61. PubMed ID: 22796244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online decoding of hidden Markov models for gait event detection using foot-mounted gyroscopes.
    Mannini A; Genovese V; Maria Sabatini A
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1122-30. PubMed ID: 25014927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network.
    Taborri J; Rossi S; Palermo E; Patanè F; Cappa P
    Sensors (Basel); 2014 Sep; 14(9):16212-34. PubMed ID: 25184488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations.
    Rueterbories J; Spaich EG; Andersen OK
    Med Eng Phys; 2014 Apr; 36(4):502-8. PubMed ID: 24182424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection.
    Kotiadis D; Hermens HJ; Veltink PH
    Med Eng Phys; 2010 May; 32(4):287-97. PubMed ID: 20153237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing Bodyweight-Supported Treadmill Walking on Land and Underwater Using Foot-Worn Inertial Measurement Units and Machine Learning for Gait Event Detection.
    Song S; Fernandes NJ; Nordin AD
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37766002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.
    Zhou Z; Yang S; Ni Z; Qian W; Gu C; Cao Z
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IMU-based gait analysis in lower limb prosthesis users: Comparison of step demarcation algorithms.
    Bastas G; Fleck JJ; Peters RA; Zelik KE
    Gait Posture; 2018 Jul; 64():30-37. PubMed ID: 29807270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Gait Posture; 2018 Oct; 66():76-82. PubMed ID: 30170137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking speed estimation using foot-mounted inertial sensors: comparing machine learning and strap-down integration methods.
    Mannini A; Sabatini AM
    Med Eng Phys; 2014 Oct; 36(10):1312-21. PubMed ID: 25199588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hidden Markov model-based strategy for gait segmentation using inertial sensors: Application to elderly, hemiparetic patients and Huntington's disease patients.
    Mannini A; Trojaniello D; Della Croce U; Sabatini AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5179-82. PubMed ID: 26737458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study.
    Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL
    J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time gait event detection for lower limb amputees using a single wearable sensor.
    Maqbool HF; Husman MA; Awad MI; Abouhossein A; Mehryar P; Iqbal N; Dehghani-Sanij AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5067-5070. PubMed ID: 28269407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Gait Event Detection Algorithm Using a Thigh-Worn Inertial Measurement Unit and Joint Angle Information.
    Strick JA; Farris RJ; Sawicki JT
    J Biomech Eng; 2024 Apr; 146(4):. PubMed ID: 38183222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol, Avon); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.