These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 31284669)
21. Pharmacodynamic Models of Differential Bortezomib Signaling Across Several Cell Lines of Multiple Myeloma. Ramakrishnan V; Mager DE CPT Pharmacometrics Syst Pharmacol; 2019 Mar; 8(3):146-157. PubMed ID: 30516019 [TBL] [Abstract][Full Text] [Related]
22. Interference with nuclear factor kappa B and c-Jun NH2-terminal kinase signaling by TRAF6C small interfering RNA inhibits myeloma cell proliferation and enhances apoptosis. Chen H; Li M; Campbell RA; Burkhardt K; Zhu D; Li SG; Lee HJ; Wang C; Zeng Z; Gordon MS; Bonavida B; Berenson JR Oncogene; 2006 Oct; 25(49):6520-7. PubMed ID: 16702955 [TBL] [Abstract][Full Text] [Related]
23. High throughput chemical library screening identifies a novel p110-δ inhibitor that potentiates the anti-myeloma effect of bortezomib. Malek E; Driscoll JJ Oncotarget; 2016 Jun; 7(25):38523-38538. PubMed ID: 27229530 [TBL] [Abstract][Full Text] [Related]
24. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Turner JG; Kashyap T; Dawson JL; Gomez J; Bauer AA; Grant S; Dai Y; Shain KH; Meads M; Landesman Y; Sullivan DM Oncotarget; 2016 Nov; 7(48):78896-78909. PubMed ID: 27806331 [TBL] [Abstract][Full Text] [Related]
25. Blockage of interleukin-6 signaling with 6-amino-4-quinazoline synergistically induces the inhibitory effect of bortezomib in human U266 cells. Park J; Ahn KS; Bae EK; Kim BS; Kim BK; Lee YY; Yoon SS Anticancer Drugs; 2008 Sep; 19(8):777-82. PubMed ID: 18690088 [TBL] [Abstract][Full Text] [Related]
26. MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Du J; Liu S; He J; Liu X; Qu Y; Yan W; Fan J; Li R; Xi H; Fu W; Zhang C; Yang J; Hou J Oncotarget; 2015 Jun; 6(17):14993-5007. PubMed ID: 25915427 [TBL] [Abstract][Full Text] [Related]
27. The role of nuclear factor-kappaB in the biology and treatment of multiple myeloma. Berenson JR; Ma HM; Vescio R Semin Oncol; 2001 Dec; 28(6):626-33. PubMed ID: 11740821 [TBL] [Abstract][Full Text] [Related]
28. Targeting the cross-talk between the hedgehog and NF-κB signaling pathways in multiple myeloma. Cai K; Na W; Guo M; Xu R; Wang X; Qin Y; Wu Y; Jiang J; Huang H Leuk Lymphoma; 2019 Mar; 60(3):772-781. PubMed ID: 30644322 [TBL] [Abstract][Full Text] [Related]
29. Anti-proliferative effect of RCE-4 from Reineckia carnea on human cervical cancer HeLa cells by inhibiting the PI3K/Akt/mTOR signaling pathway and NF-κB activation. Bai C; Yang X; Zou K; He H; Wang J; Qin H; Yu X; Liu C; Zheng J; Cheng F; Chen J Naunyn Schmiedebergs Arch Pharmacol; 2016 Jun; 389(6):573-84. PubMed ID: 26935715 [TBL] [Abstract][Full Text] [Related]
30. Everolimus shows synergistic antimyeloma effects with bortezomib via the AKT/mTOR pathway. Li J; Liu Z; Li Y; Jing Q; Wang H; Liu H; Chen J; Feng J; Shao Q; Fu R J Investig Med; 2019 Jan; 67(1):39-47. PubMed ID: 29997148 [TBL] [Abstract][Full Text] [Related]
31. PLK4 inhibitor plus bortezomib exhibits a synergistic effect on treating multiple myeloma via inactivating PI3K/AKT signaling. Xu B; Li J; Xu D; Ran Q Ir J Med Sci; 2023 Apr; 192(2):561-567. PubMed ID: 35508865 [TBL] [Abstract][Full Text] [Related]
32. The role of plasmin in the pathogenesis of murine multiple myeloma. Eiamboonsert S; Salama Y; Watarai H; Dhahri D; Tsuda Y; Okada Y; Hattori K; Heissig B Biochem Biophys Res Commun; 2017 Jun; 488(2):387-392. PubMed ID: 28501622 [TBL] [Abstract][Full Text] [Related]
33. Loss of RASSF4 Expression in Multiple Myeloma Promotes RAS-Driven Malignant Progression. De Smedt E; Maes K; Verhulst S; Lui H; Kassambara A; Maes A; Robert N; Heirman C; Cakana A; Hose D; Breckpot K; van Grunsven LA; De Veirman K; Menu E; Vanderkerken K; Moreaux J; De Bruyne E Cancer Res; 2018 Mar; 78(5):1155-1168. PubMed ID: 29259009 [TBL] [Abstract][Full Text] [Related]
34. Network-Based Analysis of Bortezomib Pharmacodynamic Heterogeneity in Multiple Myeloma Cells. Ramakrishnan V; Mager DE J Pharmacol Exp Ther; 2018 Jun; 365(3):734-751. PubMed ID: 29632237 [TBL] [Abstract][Full Text] [Related]
35. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16. Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115 [TBL] [Abstract][Full Text] [Related]
36. Bortezomib could down-regulate the expression of RANKL, inhibit cell proliferation and induce cell apoptosis in the human myeloma cell line RPMI 8226 by activating casepase-3. Lin L; Chen D; Xiang ZF; Pei RZ; Zhang PS; Liu XH; Du XH; Lu Y Cancer Biomark; 2017 Aug; 20(2):217-224. PubMed ID: 28869453 [TBL] [Abstract][Full Text] [Related]
37. A novel carbohydrate-based therapeutic GCS-100 overcomes bortezomib resistance and enhances dexamethasone-induced apoptosis in multiple myeloma cells. Chauhan D; Li G; Podar K; Hideshima T; Neri P; He D; Mitsiades N; Richardson P; Chang Y; Schindler J; Carver B; Anderson KC Cancer Res; 2005 Sep; 65(18):8350-8. PubMed ID: 16166312 [TBL] [Abstract][Full Text] [Related]
38. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models. Wu XY; Xu H; Wu ZF; Chen C; Liu JY; Wu GN; Yao XQ; Liu FK; Li G; Shen L Oncotarget; 2015 Dec; 6(42):44563-78. PubMed ID: 26575424 [TBL] [Abstract][Full Text] [Related]
39. Kalopanaxsaponin A inhibits PMA-induced invasion by reducing matrix metalloproteinase-9 via PI3K/Akt- and PKCdelta-mediated signaling in MCF-7 human breast cancer cells. Park SK; Hwang YS; Park KK; Park HJ; Seo JY; Chung WY Carcinogenesis; 2009 Jul; 30(7):1225-33. PubMed ID: 19420016 [TBL] [Abstract][Full Text] [Related]
40. Activation of PI3K/Akt/IKK-alpha/NF-kappaB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: its inhibition by quercetin. Sun ZJ; Chen G; Hu X; Zhang W; Liu Y; Zhu LX; Zhou Q; Zhao YF Apoptosis; 2010 Jul; 15(7):850-63. PubMed ID: 20386985 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]