BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31284715)

  • 1. Antioxidant Sensing by Spiropyrans: Substituent Effects and NMR Spectroscopic Studies.
    Garcia J; Addison JB; Liu SZ; Lu S; Faulkner AL; Hodur BM; Balmond EI; Or VW; Yun JH; Trevino K; Shen B; Shaw JT; Frank NL; Louie AY
    J Phys Chem B; 2019 Aug; 123(31):6799-6809. PubMed ID: 31284715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of bis-spiropyran ligands as dipolar molecule receptors and application to in vivo glutathione fluorescent probes.
    Shao N; Jin J; Wang H; Zheng J; Yang R; Chan W; Abliz Z
    J Am Chem Soc; 2010 Jan; 132(2):725-36. PubMed ID: 20030359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous nucleophilic-substituted and electrostatic interactions for thermal switching of spiropyran: a new approach for rapid and selective colorimetric detection of thiol-containing amino acids.
    Li Y; Duan Y; Li J; Zheng J; Yu H; Yang R
    Anal Chem; 2012 Jun; 84(11):4732-8. PubMed ID: 22545785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials.
    Xia H; Xie K; Zou G
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29258220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rationally Designed Reversible 'Turn-Off' Sensor for Glutathione.
    Heng S; Zhang X; Pei J; Abell AD
    Biosensors (Basel); 2017 Sep; 7(3):. PubMed ID: 28878194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel molecular hybrids of indoline spiropyrans and α-lipoic acid as potential photopharmacological agents: Synthesis, structure, photochromic and biological properties.
    Ozhogin IV; Zolotukhin PV; Mukhanov EL; Rostovtseva IA; Makarova NI; Tkachev VV; Beseda DK; Metelitsa AV; Lukyanov BS
    Bioorg Med Chem Lett; 2021 Jan; 31():127709. PubMed ID: 33242575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spiropyran photoswitches in the context of DNA: synthesis and photochromic properties.
    Brieke C; Heckel A
    Chemistry; 2013 Nov; 19(46):15726-34. PubMed ID: 24115210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative.
    Shao N; Zhang Y; Cheung S; Yang R; Chan W; Mo T; Li K; Liu F
    Anal Chem; 2005 Nov; 77(22):7294-303. PubMed ID: 16285678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO2 triggering and controlling orthogonally multiresponsive photochromic systems.
    Darwish TA; Evans RA; James M; Malic N; Triani G; Hanley TL
    J Am Chem Soc; 2010 Aug; 132(31):10748-55. PubMed ID: 20681707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-soluble Py-BIPS spiropyrans as photoswitches for biological applications.
    Özçoban C; Halbritter T; Steinwand S; Herzig LM; Kohl-Landgraf J; Askari N; Groher F; Fürtig B; Richter C; Schwalbe H; Suess B; Wachtveitl J; Heckel A
    Org Lett; 2015 Mar; 17(6):1517-20. PubMed ID: 25760939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, IR, UV/vis-, (1)H NMR and DFT study of chelatophore functionalized 1,3-benzoxazinone spiropyrans.
    Bulanov AO; Popov LD; Shcherbakov IN; Kogan VA; Barachevsky VA; Lukov VV; Borisenko SN; Tkachenko YN
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(3):1146-52. PubMed ID: 18550424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Modern Look at Spiropyrans: From Single Molecules to Smart Materials.
    Kozlenko AS; Ozhogin IV; Pugachev AD; Lukyanova MB; El-Sewify IM; Lukyanov BS
    Top Curr Chem (Cham); 2023 Jan; 381(1):8. PubMed ID: 36624333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction studies between photochromic spiropyrans and transition metal cations: the curious case of copper.
    Natali M; Giordani S
    Org Biomol Chem; 2012 Feb; 10(6):1162-71. PubMed ID: 22146800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Useful spectrokinetic methods for the investigation of photochromic and thermo-photochromic spiropyrans.
    Maafi M
    Molecules; 2008 Sep; 13(9):2260-302. PubMed ID: 18830155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spiropyrans as molecular optical switches.
    Seefeldt B; Kasper R; Beining M; Mattay J; Arden-Jacob J; Kemnitzer N; Drexhage KH; Heilemann M; Sauer M
    Photochem Photobiol Sci; 2010 Feb; 9(2):213-20. PubMed ID: 20126797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complete 1H and 13C NMR spectral assignment of symmetric and asymmetric bis-spiropyran derivatives.
    Keum SR; Roh HJ; Choi YK; Lim SS; Kim SH; Koh K
    Magn Reson Chem; 2005 Oct; 43(10):873-6. PubMed ID: 16041775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spiropyran-amidine: a molecular canary for visual detection of carbon dioxide gas.
    Darwish TA; Evans RA; James M; Hanley TL
    Chemistry; 2011 Oct; 17(41):11399-404. PubMed ID: 21905137
    [No Abstract]   [Full Text] [Related]  

  • 18. Probing Metal Ion Complexation of Ligands with Multiple Metal Binding Sites: The Case of Spiropyrans.
    Baldrighi M; Locatelli G; Desper J; Aakeröy CB; Giordani S
    Chemistry; 2016 Sep; 22(39):13976-13984. PubMed ID: 27516153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic monitoring of glutathione redox status in UV-B irradiated reconstituted epidermis: effect of antioxidant activity on skin homeostasis.
    Meloni M; Nicolay JF
    Toxicol In Vitro; 2003; 17(5-6):609-13. PubMed ID: 14599452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiropyran-based optical approaches for mercury ion sensing: improving sensitivity and selectivity via cooperative ligation interactions using cysteine.
    Shao N; Gao X; Wang H; Yang R; Chan W
    Anal Chim Acta; 2009 Nov; 655(1-2):1-7. PubMed ID: 19925910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.