These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31285026)
1. Metabolic diversity conveyed by the process leading to glutathione accumulation in inactivated dry yeast: A synthetic media study. Bahut F; Liu Y; Romanet R; Coelho C; Sieczkowski N; Alexandre H; Schmitt-Kopplin P; Nikolantonaki M; Gougeon RD Food Res Int; 2019 Sep; 123():762-770. PubMed ID: 31285026 [TBL] [Abstract][Full Text] [Related]
2. Impact of glutathione-enriched inactive dry yeast preparations on the stability of terpenes during model wine aging. Rodríguez-Bencomo JJ; Andújar-Ortiz I; Moreno-Arribas MV; Simó C; González J; Chana A; Dávalos J; Pozo-Bayón MÁ J Agric Food Chem; 2014 Feb; 62(6):1373-83. PubMed ID: 24460029 [TBL] [Abstract][Full Text] [Related]
3. Assessment of glutathione levels in model solution and grape ferments supplemented with glutathione-enriched inactive dry yeast preparations using a novel UPLC-MS/MS method. Kritzinger EC; Stander MA; Du Toit WJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(1):80-92. PubMed ID: 23043225 [TBL] [Abstract][Full Text] [Related]
4. Multivariate analysis reveals effect of glutathione-enriched inactive dry yeast on amino acids and volatile components of kiwi wine. Liu D; Qi Y; Zhao N; Cao Y; Xu J; Fan M Food Chem; 2020 Nov; 329():127086. PubMed ID: 32516706 [TBL] [Abstract][Full Text] [Related]
5. Identification and quantification of free and bound phenolic compounds contained in the high-molecular weight melanoidin fractions derived from two different types of cocoa beans by UHPLC-DAD-ESI-HR-MS Oracz J; Nebesny E; Żyżelewicz D Food Res Int; 2019 Jan; 115():135-149. PubMed ID: 30599925 [TBL] [Abstract][Full Text] [Related]
6. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges. Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687 [TBL] [Abstract][Full Text] [Related]
7. Effect of SO Zhang Y; Jiang L; Zhang F; Yuan D; Yi L; Min Z J Food Sci; 2024 May; 89(5):2814-2826. PubMed ID: 38551189 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant activity from inactivated yeast: Expanding knowledge beyond the glutathione-related oxidative stability of wine. Bahut F; Romanet R; Sieczkowski N; Schmitt-Kopplin P; Nikolantonaki M; Gougeon RD Food Chem; 2020 Apr; 325():126941. PubMed ID: 32387931 [TBL] [Abstract][Full Text] [Related]
9. Polyphenolic profile of butterhead lettuce cultivar by ultrahigh performance liquid chromatography coupled online to UV-visible spectrophotometry and quadrupole time-of-flight mass spectrometry. Viacava GE; Roura SI; López-Márquez DM; Berrueta LA; Gallo B; Alonso-Salces RM Food Chem; 2018 Sep; 260():239-273. PubMed ID: 29699668 [TBL] [Abstract][Full Text] [Related]
10. Impact of prolonged withering on phenolic compounds and antioxidant capability in white tea using LC-MS-based metabolomics and HPLC analysis: Comparison with green tea. Zhou B; Wang Z; Yin P; Ma B; Ma C; Xu C; Wang J; Wang Z; Yin D; Xia T Food Chem; 2022 Jan; 368():130855. PubMed ID: 34496334 [TBL] [Abstract][Full Text] [Related]
11. Broad screening and identification of β-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search. Li T; Cao J; Li Z; Wang X; He P Food Chem; 2016 Feb; 192():188-96. PubMed ID: 26304337 [TBL] [Abstract][Full Text] [Related]
12. Rapid discrimination of raw and sulfur-fumigated Smilax glabra based on chemical profiles by UHPLC-QTOF-MS/MS coupled with multivariate statistical analysis. He L; Zhang Z; Liu Y; Chen D; Yuan M; Dong G; Luo P; Yan Z Food Res Int; 2018 Jun; 108():226-236. PubMed ID: 29735052 [TBL] [Abstract][Full Text] [Related]
13. Comparison of characteristic components in tea-leaves fermented by Aspergillus pallidofulvus PT-3, Aspergillus sesamicola PT-4 and Penicillium manginii PT-5 using LC-MS metabolomics and HPLC analysis. Ma C; Li X; Zheng C; Zhou B; Xu C; Xia T Food Chem; 2021 Jul; 350():129228. PubMed ID: 33618088 [TBL] [Abstract][Full Text] [Related]
15. Metabolic variation in the pulps of two durian cultivars: Unraveling the metabolites that contribute to the flavor. Pinsorn P; Oikawa A; Watanabe M; Sasaki R; Ngamchuachit P; Hoefgen R; Saito K; Sirikantaramas S Food Chem; 2018 Dec; 268():118-125. PubMed ID: 30064738 [TBL] [Abstract][Full Text] [Related]
16. Changes in sparkling wine aroma during the second fermentation under CO Martínez-García R; García-Martínez T; Puig-Pujol A; Mauricio JC; Moreno J Food Chem; 2017 Dec; 237():1030-1040. PubMed ID: 28763947 [TBL] [Abstract][Full Text] [Related]
17. Detection method optimization, content analysis and stability exploration of natamycin in wine. Sun X; Li X; Wang P; Ma T; Huang W; Han S; Zhan J Food Chem; 2016 Mar; 194():928-37. PubMed ID: 26471636 [TBL] [Abstract][Full Text] [Related]
18. A fragmentation-based method for the differentiation of glutathione conjugates by high-resolution mass spectrometry with electrospray ionization. Xie C; Zhong D; Chen X Anal Chim Acta; 2013 Jul; 788():89-98. PubMed ID: 23845486 [TBL] [Abstract][Full Text] [Related]
19. Investigation of intraregional variation, grape amino acids, and pre-fermentation freezing on varietal thiols and their precursors for Vitis vinifera Sauvignon blanc. Chen L; Capone DL; Nicholson EL; Jeffery DW Food Chem; 2019 Oct; 295():637-645. PubMed ID: 31174806 [TBL] [Abstract][Full Text] [Related]
20. Characterization of chemical compounds susceptible to be extracted from cork by the wine using GC-MS and Pinto J; Oliveira AS; Lopes P; Roseira I; Cabral M; Bastos ML; Guedes de Pinho P Food Chem; 2019 Jan; 271():639-649. PubMed ID: 30236727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]