These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31285445)

  • 1. Improving species distribution models of zoonotic marine parasites.
    Alt KG; Kochmann J; Klimpel S; Cunze S
    Sci Rep; 2019 Jul; 9(1):9851. PubMed ID: 31285445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm.
    Kuhn T; Cunze S; Kochmann J; Klimpel S
    Sci Rep; 2016 Aug; 6():30246. PubMed ID: 27507328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Food webs and the transmission of parasites to marine fish.
    Marcogliese DJ
    Parasitology; 2002; 124 Suppl():S83-99. PubMed ID: 12396218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The trouble with sealworms (Pseudoterranova decipiens species complex, Nematoda): a review.
    McClelland G
    Parasitology; 2002; 124 Suppl():S183-203. PubMed ID: 12396224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecology and biogeography of marine parasites.
    Rohde K
    Adv Mar Biol; 2002; 43():1-86. PubMed ID: 12154612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisakid parasites (Nematoda: Anisakidae) in 3 commercially important gadid fish species from the southern Barents Sea, with emphasis on key infection drivers and spatial distribution within the hosts.
    Levsen A; Cipriani P; Palomba M; Giulietti L; Storesund JE; Bao M
    Parasitology; 2022 Dec; 149(14):1942-1957. PubMed ID: 36321524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular identification, morphological characterization and new insights into the ecology of larval Pseudoterranova cattani in fishes from the Argentine coast with its differentiation from the Antarctic species, P. decipiens sp. E (Nematoda: Anisakidae).
    Timi JT; Paoletti M; Cimmaruta R; Lanfranchi AL; Alarcos AJ; Garbin L; George-Nascimento M; Rodríguez DH; Giardino GV; Mattiucci S
    Vet Parasitol; 2014 Jan; 199(1-2):59-72. PubMed ID: 24161261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. It's a wormy world: Meta-analysis reveals several decades of change in the global abundance of the parasitic nematodes Anisakis spp. and Pseudoterranova spp. in marine fishes and invertebrates.
    Fiorenza EA; Wendt CA; Dobkowski KA; King TL; Pappaionou M; Rabinowitz P; Samhouri JF; Wood CL
    Glob Chang Biol; 2020 May; 26(5):2854-2866. PubMed ID: 32189441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parasite Rates of Discovery, Global Species Richness and Host Specificity.
    Costello MJ
    Integr Comp Biol; 2016 Oct; 56(4):588-99. PubMed ID: 27400977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seals, fish, humans and parasites in the Baltic: ecology, evolution and history.
    Buchmann K
    Folia Parasitol (Praha); 2023 May; 70():. PubMed ID: 37265200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parasitism at the ecosystem level in the Baltic Sea.
    Zander CD; Reimer LW
    Parasitology; 2002; 124 Suppl():S119-35. PubMed ID: 12396220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing ontogenetic habitat shifts in marine fishes: advancing nascent methods for marine spatial management.
    Galaiduk R; Radford BT; Saunders BJ; Newman SJ; Harvey ES
    Ecol Appl; 2017 Sep; 27(6):1776-1788. PubMed ID: 28452413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species of Anisakidae nematodes and Clinostomum spp. infecting lisa Mugil curema (Mugilidae) intended for human consumption in Mexico.
    Rodríguez NER; Sánchez VV; Anda FRG; Reyna PBG; Rosa LG; Zepeda-Velázquez AP
    Rev Bras Parasitol Vet; 2020; 29(1):e017819. PubMed ID: 32236333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Niche restriction in parasites: proximate and ultimate causes.
    Rohde K
    Parasitology; 1994; 109 Suppl():S69-84. PubMed ID: 7854853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaining insights into the ecological role of the New Zealand sole (Peltorhamphus novaezeelandiae) through parasites.
    Anglade T; Randhawa HS
    J Helminthol; 2018 Mar; 92(2):187-196. PubMed ID: 28424102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parasites of marine, freshwater and farmed fishes of Portugal: a review.
    Eiras Jda C
    Rev Bras Parasitol Vet; 2016; 25(3):259-78. PubMed ID: 27683841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marine parasites as biological tags in South American Atlantic waters, current status and perspectives.
    Cantatore DM; Timi JT
    Parasitology; 2015 Jan; 142(1):5-24. PubMed ID: 24477070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host specificity and the probability of discovering species of helminth parasites.
    Poulin R; Mouillot D
    Parasitology; 2005 Jun; 130(Pt 6):709-15. PubMed ID: 15977908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utility of bioenergetics modelling in quantifying predation rates of marine apex predators: Ecological and fisheries implications.
    Barnett A; Braccini M; Dudgeon CL; Payne NL; Abrantes KG; Sheaves M; Snelling EP
    Sci Rep; 2017 Oct; 7(1):12982. PubMed ID: 29021551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parasites of cartilaginous fishes (Chondrichthyes) in South Africa - a neglected field of marine science.
    Schaeffner BC; Smit NJ
    Folia Parasitol (Praha); 2019 Feb; 66():. PubMed ID: 30919826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.