These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 31285468)

  • 21. Enhancement of motor imagery training efficiency by an online adaptive training paradigm integrated with error related potential.
    Tao T; Jia Y; Xu G; Liang R; Zhang Q; Chen L; Gao Y; Chen R; Zheng X; Yu Y
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36608339
    [No Abstract]   [Full Text] [Related]  

  • 22. Effects of Continuous Kinaesthetic Feedback Based on Tendon Vibration on Motor Imagery BCI Performance.
    Barsotti M; Leonardis D; Vanello N; Bergamasco M; Frisoli A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):105-114. PubMed ID: 28809705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI.
    Erdoĝan SB; Özsarfati E; Dilek B; Kadak KS; Hanoĝlu L; Akın A
    J Neural Eng; 2019 Apr; 16(2):026029. PubMed ID: 30634177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the Relationship Between Motor Imagery and Age-Related Fatigue for CNN Classification of the EEG Data.
    Li X; Chen P; Yu X; Jiang N
    Front Aging Neurosci; 2022; 14():909571. PubMed ID: 35912081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of ERD/S by having a conscious target during lower-extremity motor imagery.
    Kitahara K; Kondo T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6630-3. PubMed ID: 26737813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Event-related desynchronization possibly discriminates the kinesthetic illusion induced by visual stimulation from movement observation.
    Shibata E; Kaneko F
    Exp Brain Res; 2019 Dec; 237(12):3233-3240. PubMed ID: 31630226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Across-subject offline decoding of motor imagery from MEG and EEG.
    Halme HL; Parkkonen L
    Sci Rep; 2018 Jul; 8(1):10087. PubMed ID: 29973645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between the vividness of motor imagery and physical function in patients with subacute hemiplegic stroke: a cross-sectional preliminary study.
    Sakai K; Hosoi Y
    Brain Inj; 2022 Jan; 36(1):121-126. PubMed ID: 35377819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor imagery training: Kinesthetic imagery strategy and inferior parietal fMRI activation.
    Lebon F; Horn U; Domin M; Lotze M
    Hum Brain Mapp; 2018 Apr; 39(4):1805-1813. PubMed ID: 29322583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation effect of transcranial direct current stimulation on phase synchronization in motor imagery brain-computer interface.
    He W; Wei P; Zhou Y; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1270-3. PubMed ID: 25570197
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testing the distinctiveness of visual imagery and motor imagery in a reach paradigm.
    Gabbard C; Ammar D; Cordova A
    Int J Neurosci; 2009; 119(3):353-65. PubMed ID: 19116842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of a common spatial pattern-based algorithm for an fNIRS-based motor imagery brain-computer interface.
    Zhang S; Zheng Y; Wang D; Wang L; Ma J; Zhang J; Xu W; Li D; Zhang D
    Neurosci Lett; 2017 Aug; 655():35-40. PubMed ID: 28663052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis.
    Gu L; Yu Z; Ma T; Wang H; Li Z; Fan H
    Neuroscience; 2020 Jun; 436():93-109. PubMed ID: 32283182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery.
    Ahn S; Ahn M; Cho H; Chan Jun S
    J Neural Eng; 2014 Dec; 11(6):066004. PubMed ID: 25307730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain activation profiles during kinesthetic and visual imagery: An fMRI study.
    Kilintari M; Narayana S; Babajani-Feremi A; Rezaie R; Papanicolaou AC
    Brain Res; 2016 Sep; 1646():249-261. PubMed ID: 27288703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of visual and proprioceptive feedback on sensorimotor rhythms during BCI training.
    Halme HL; Parkkonen L
    PLoS One; 2022; 17(2):e0264354. PubMed ID: 35196360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ERD modulations during motor imageries relate to users' traits and BCI performances.
    Rimbert S; Lotte F
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():203-207. PubMed ID: 36086209
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.
    Kondo T; Saeki M; Hayashi Y; Nakayashiki K; Takata Y
    Hum Mov Sci; 2015 Oct; 43():239-49. PubMed ID: 25467185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of Event-Related Desynchronization in Motor Imagery Based on Transcranial Electrical Stimulation.
    Xie J; Peng M; Lu J; Xiao C; Zong X; Wang M; Gao D; Qin Y; Liu T
    Front Hum Neurosci; 2021; 15():635351. PubMed ID: 33815080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.