These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31285508)
1. Separation and recovery of carbon powder in anodes from spent lithium-ion batteries to synthesize graphene. Yang L; Yang L; Xu G; Feng Q; Li Y; Zhao E; Ma J; Fan S; Li X Sci Rep; 2019 Jul; 9(1):9823. PubMed ID: 31285508 [TBL] [Abstract][Full Text] [Related]
2. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823 [TBL] [Abstract][Full Text] [Related]
3. High-value utilization of graphite electrodes in spent lithium-ion batteries: From 3D waste graphite to 2D graphene oxide. Yu J; Lin M; Tan Q; Li J J Hazard Mater; 2021 Jan; 401():123715. PubMed ID: 33113723 [TBL] [Abstract][Full Text] [Related]
4. Regulation of high value-added carbon nanomaterials by DC arc plasma using graphite anodes from spent lithium-ion batteries. Xie Z; Zhang D; Yang B; Qu T; Liang F Waste Manag; 2024 Feb; 174():88-95. PubMed ID: 38035661 [TBL] [Abstract][Full Text] [Related]
5. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design. Ren J; Ren RP; Lv YK Chem Asian J; 2018 May; 13(9):1223-1227. PubMed ID: 29524325 [TBL] [Abstract][Full Text] [Related]
6. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216 [TBL] [Abstract][Full Text] [Related]
7. Graphene-Like-Graphite as Fast-Chargeable and High-Capacity Anode Materials for Lithium Ion Batteries. Cheng Q; Okamoto Y; Tamura N; Tsuji M; Maruyama S; Matsuo Y Sci Rep; 2017 Nov; 7(1):14782. PubMed ID: 29093496 [TBL] [Abstract][Full Text] [Related]
8. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries. Fan X; Zheng WT; Kuo JL; Singh DJ ACS Appl Mater Interfaces; 2013 Aug; 5(16):7793-7. PubMed ID: 23863039 [TBL] [Abstract][Full Text] [Related]
9. Photocatalytic synthesis of TiO(2) and reduced graphene oxide nanocomposite for lithium ion battery. Qiu J; Zhang P; Ling M; Li S; Liu P; Zhao H; Zhang S ACS Appl Mater Interfaces; 2012 Jul; 4(7):3636-42. PubMed ID: 22738305 [TBL] [Abstract][Full Text] [Related]
10. Upcycling Real Waste Mixed Lithium-Ion Batteries by Simultaneous Production of rGO and Lithium-Manganese-Rich Cathode Material. Schiavi PG; Zanoni R; Branchi M; Marcucci C; Zamparelli C; Altimari P; Navarra MA; Pagnanelli F ACS Sustain Chem Eng; 2021 Oct; 9(39):13303-13311. PubMed ID: 34631326 [TBL] [Abstract][Full Text] [Related]
11. Lithiation-Aided Conversion of End-of-Life Lithium-Ion Battery Anodes to High-Quality Graphene and Graphene Oxide. Zhang Y; Song N; He J; Chen R; Li X Nano Lett; 2019 Jan; 19(1):512-519. PubMed ID: 30567438 [TBL] [Abstract][Full Text] [Related]
12. Graphene-bonded and -encapsulated si nanoparticles for lithium ion battery anodes. Wen Y; Zhu Y; Langrock A; Manivannan A; Ehrman SH; Wang C Small; 2013 Aug; 9(16):2810-6. PubMed ID: 23440956 [TBL] [Abstract][Full Text] [Related]
13. Silicon Nanoparticles Embedded in N-Doped Few-Layered Graphene: Facile Synthesis and Application as an Effective Anode for Lithium Ion Batteries. Luan Y; Yang B; Zhu K; Shao S; Gao Y; Cheng K; Yan J; Ye K; Wang G; Cao D Chempluschem; 2019 Oct; 84(10):1519-1524. PubMed ID: 31943930 [TBL] [Abstract][Full Text] [Related]
14. Environmental-friendly and effectively regenerate anode material of spent lithium-ion batteries into high-performance P-doped graphite. Yang X; Zhen H; Liu H; Chen C; Zhong Y; Yang X; Wang X; Yang L Waste Manag; 2023 Apr; 161():52-60. PubMed ID: 36863210 [TBL] [Abstract][Full Text] [Related]
15. Investigation of modified graphene for energy storage applications. Shuvo MA; Khan MA; Karim H; Morton P; Wilson T; Lin Y ACS Appl Mater Interfaces; 2013 Aug; 5(16):7881-5. PubMed ID: 23806171 [TBL] [Abstract][Full Text] [Related]
16. Three-Dimensional Crumpled Reduced Graphene Oxide/MoS2 Nanoflowers: A Stable Anode for Lithium-Ion Batteries. Xiong F; Cai Z; Qu L; Zhang P; Yuan Z; Asare OK; Xu W; Lin C; Mai L ACS Appl Mater Interfaces; 2015 Jun; 7(23):12625-30. PubMed ID: 26039696 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries. Zhang J; Wang B; Zhou J; Xia R; Chu Y; Huang J Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772432 [TBL] [Abstract][Full Text] [Related]
18. Aromatic Polyimide/Graphene Composite Organic Cathodes for Fast and Sustainable Lithium-Ion Batteries. Lyu H; Li P; Liu J; Mahurin S; Chen J; Hensley DK; Veith GM; Guo Z; Dai S; Sun XG ChemSusChem; 2018 Feb; 11(4):763-772. PubMed ID: 29363278 [TBL] [Abstract][Full Text] [Related]
19. Graphene--nanotube--iron hierarchical nanostructure as lithium ion battery anode. Lee SH; Sridhar V; Jung JH; Karthikeyan K; Lee YS; Mukherjee R; Koratkar N; Oh IK ACS Nano; 2013 May; 7(5):4242-51. PubMed ID: 23550743 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries. Ren Y; Zhang J; Liu Y; Li H; Wei H; Li B; Wang X ACS Appl Mater Interfaces; 2012 Sep; 4(9):4776-80. PubMed ID: 22900618 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]