These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31285610)

  • 1. Theoretical strength and rubber-like behaviour in micro-sized pyrolytic carbon.
    Zhang X; Zhong L; Mateos A; Kudo A; Vyatskikh A; Gao H; Greer JR; Li X
    Nat Nanotechnol; 2019 Aug; 14(8):762-769. PubMed ID: 31285610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon.
    Zhang X; Vyatskikh A; Gao H; Greer JR; Li X
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6665-6672. PubMed ID: 30886098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct Roles of Tensile and Compressive Stresses in Graphitizing and Properties of Carbon Nanofibers.
    Liu Y; Lau E; Mager D; Madou MJ; Ghazinejad M
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving the theoretical limit of strength in shell-based carbon nanolattices.
    Wang Y; Zhang X; Li Z; Gao H; Li X
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2119536119. PubMed ID: 35969756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brittle-to-ductile transition and theoretical strength in a metal-organic framework glass.
    Yan S; Bennett TD; Feng W; Zhu Z; Yang D; Zhong Z; Qin QH
    Nanoscale; 2023 May; 15(18):8235-8244. PubMed ID: 37071115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaching diamond's theoretical elasticity and strength limits.
    Nie A; Bu Y; Li P; Zhang Y; Jin T; Liu J; Su Z; Wang Y; He J; Liu Z; Wang H; Tian Y; Yang W
    Nat Commun; 2019 Dec; 10(1):5533. PubMed ID: 31797924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic simulation of nanomechanical properties of Alzheimer's Abeta(1-40) amyloid fibrils under compressive and tensile loading.
    Paparcone R; Keten S; Buehler MJ
    J Biomech; 2010 Apr; 43(6):1196-201. PubMed ID: 20044089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaching theoretical strength in glassy carbon nanolattices.
    Bauer J; Schroer A; Schwaiger R; Kraft O
    Nat Mater; 2016 Apr; 15(4):438-43. PubMed ID: 26828314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-deformation and high-strength amorphous porous carbon nanospheres.
    Yang W; Mao S; Yang J; Shang T; Song H; Mabon J; Swiech W; Vance JR; Yue Z; Dillon SJ; Xu H; Xu B
    Sci Rep; 2016 Apr; 6():24187. PubMed ID: 27072412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraordinary tensile strength and ductility of scalable nanoporous graphene.
    Kashani H; Ito Y; Han J; Liu P; Chen M
    Sci Adv; 2019 Feb; 5(2):eaat6951. PubMed ID: 30793025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomechanical Pyrolytic Carbon Resonators: Novel Fabrication Method and Characterization of Mechanical Properties.
    Kurek M; Larsen FK; Larsen PE; Schmid S; Boisen A; Keller SS
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27428980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment.
    Sayle TX; Inkson BJ; Karakoti A; Kumar A; Molinari M; Möbus G; Parker SC; Seal S; Sayle DC
    Nanoscale; 2011 Apr; 3(4):1823-37. PubMed ID: 21409243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion.
    Yilmazer H; Niinomi M; Nakai M; Cho K; Hieda J; Todaka Y; Miyazaki T
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2499-507. PubMed ID: 23623060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity.
    Wang JN; Luo XG; Wu T; Chen Y
    Nat Commun; 2014 Jun; 5():3848. PubMed ID: 24964266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolytic preparation and modification of carbon black recovered from waste tyres.
    Zhong R; Xu J; Hui D; Bhosale SS; Hong R
    Waste Manag Res; 2020 Jan; 38(1):35-43. PubMed ID: 31470764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model.
    Kieser JA; Weller S; Swain MV; Neil Waddell J; Das R
    Leg Med (Tokyo); 2013 Jul; 15(4):193-201. PubMed ID: 23453778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavy Graphene-Like Network Forming during Pyrolysis of Polyacrylonitrile into Carbon Fiber.
    Ishikawa T; Tanaka F; Kurushima K; Yasuhara A; Sagawa R; Fujita T; Yonesaki R; Iseki K; Nakamuro T; Harano K; Nakamura E
    J Am Chem Soc; 2023 Jun; 145(22):12244-12254. PubMed ID: 37248959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi.
    Zhang Z; Mao MM; Wang J; Gludovatz B; Zhang Z; Mao SX; George EP; Yu Q; Ritchie RO
    Nat Commun; 2015 Dec; 6():10143. PubMed ID: 26647978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended graphynes: simple scaling laws for stiffness, strength and fracture.
    Cranford SW; Brommer DB; Buehler MJ
    Nanoscale; 2012 Dec; 4(24):7797-809. PubMed ID: 23142928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of grafold: a demonstration of strengthened graphene.
    Zheng Y; Wei N; Fan Z; Xu L; Huang Z
    Nanotechnology; 2011 Oct; 22(40):405701. PubMed ID: 21896982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.