These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 31285647)
1. PocketPipe: A computational pipeline for integratedPocketome prediction and comparison. Ansar S; Sadhasivam A; Vetrivel U Bioinformation; 2019; 15(4):295-298. PubMed ID: 31285647 [TBL] [Abstract][Full Text] [Related]
2. POAP: A GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Samdani A; Vetrivel U Comput Biol Chem; 2018 Jun; 74():39-48. PubMed ID: 29533817 [TBL] [Abstract][Full Text] [Related]
3. PepVis: An integrated peptide virtual screening pipeline for ensemble and flexible docking protocols. Ansar S; Vetrivel U Chem Biol Drug Des; 2019 Dec; 94(6):2041-2050. PubMed ID: 31441995 [TBL] [Abstract][Full Text] [Related]
4. KinomeRun: An interactive utility for kinome target screening and interaction fingerprint analysis towards holistic visualization on kinome tree. Ansar S; Vetrivel U Chem Biol Drug Des; 2020 Oct; 96(4):1162-1175. PubMed ID: 32418310 [TBL] [Abstract][Full Text] [Related]
6. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. Krivák R; Hoksza D J Cheminform; 2018 Aug; 10(1):39. PubMed ID: 30109435 [TBL] [Abstract][Full Text] [Related]
7. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins. Hussein HA; Borrel A; Geneix C; Petitjean M; Regad L; Camproux AC Nucleic Acids Res; 2015 Jul; 43(W1):W436-42. PubMed ID: 25956651 [TBL] [Abstract][Full Text] [Related]
8. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure. Bhagavat R; Sankar S; Srinivasan N; Chandra N Structure; 2018 Mar; 26(3):499-512.e2. PubMed ID: 29514079 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive identification of "druggable" protein ligand binding sites. An J; Totrov M; Abagyan R Genome Inform; 2004; 15(2):31-41. PubMed ID: 15706489 [TBL] [Abstract][Full Text] [Related]
10. Identifying homogeneous subgroups of patients and important features: a topological machine learning approach. Carr E; Carrière M; Michel B; Chazal F; Iniesta R BMC Bioinformatics; 2021 Sep; 22(1):449. PubMed ID: 34544357 [TBL] [Abstract][Full Text] [Related]
11. CancerDiscover: an integrative pipeline for cancer biomarker and cancer class prediction from high-throughput sequencing data. Mohammed A; Biegert G; Adamec J; Helikar T Oncotarget; 2018 Jan; 9(2):2565-2573. PubMed ID: 29416792 [TBL] [Abstract][Full Text] [Related]
12. Form follows function: shape analysis of protein cavities for receptor-based drug design. Weisel M; Proschak E; Kriegl JM; Schneider G Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949 [TBL] [Abstract][Full Text] [Related]
13. An integrated structural proteomics approach along the druggable genome of Corynebacterium pseudotuberculosis species for putative druggable targets. Radusky LG; Hassan S; Lanzarotti E; Tiwari S; Jamal S; Ali J; Ali A; Ferreira R; Barh D; Silva A; Turjanski AG; Azevedo VA BMC Genomics; 2015; 16 Suppl 5(Suppl 5):S9. PubMed ID: 26041381 [TBL] [Abstract][Full Text] [Related]
14. Elucidating the druggability of the human proteome with eFindSite. Kana O; Brylinski M J Comput Aided Mol Des; 2019 May; 33(5):509-519. PubMed ID: 30888556 [TBL] [Abstract][Full Text] [Related]
15. Combining global and local measures for structure-based druggability predictions. Volkamer A; Kuhn D; Grombacher T; Rippmann F; Rarey M J Chem Inf Model; 2012 Feb; 52(2):360-72. PubMed ID: 22148551 [TBL] [Abstract][Full Text] [Related]
16. FORESEE: a tool for the systematic comparison of translational drug response modeling pipelines. Turnhoff LK; Hadizadeh Esfahani A; Montazeri M; Kusch N; Schuppert A Bioinformatics; 2019 Oct; 35(19):3846-3848. PubMed ID: 30821320 [TBL] [Abstract][Full Text] [Related]
17. DeepBindPoc: a deep learning method to rank ligand binding pockets using molecular vector representation. Zhang H; Saravanan KM; Lin J; Liao L; Ng JT; Zhou J; Wei Y PeerJ; 2020; 8():e8864. PubMed ID: 32292649 [TBL] [Abstract][Full Text] [Related]
18. Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing. Lim H; Poleksic A; Yao Y; Tong H; He D; Zhuang L; Meng P; Xie L PLoS Comput Biol; 2016 Oct; 12(10):e1005135. PubMed ID: 27716836 [TBL] [Abstract][Full Text] [Related]
19. Michel M; Homan EJ; Wiita E; Pedersen K; Almlöf I; Gustavsson AL; Lundbäck T; Helleday T; Warpman Berglund U Front Chem; 2020; 8():443. PubMed ID: 32548091 [TBL] [Abstract][Full Text] [Related]
20. DeeplyTough: Learning Structural Comparison of Protein Binding Sites. Simonovsky M; Meyers J J Chem Inf Model; 2020 Apr; 60(4):2356-2366. PubMed ID: 32023053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]