BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31286062)

  • 1. Control of biosilica morphology and mechanical performance by the conserved diatom gene
    Görlich S; Pawolski D; Zlotnikov I; Kröger N
    Commun Biol; 2019; 2():245. PubMed ID: 31286062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization.
    Kotzsch A; Gröger P; Pawolski D; Bomans PHH; Sommerdijk NAJM; Schlierf M; Kröger N
    BMC Biol; 2017 Jul; 15(1):65. PubMed ID: 28738898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentalysine clusters mediate silica targeting of silaffins in Thalassiosira pseudonana.
    Poulsen N; Scheffel A; Sheppard VC; Chesley PM; Kröger N
    J Biol Chem; 2013 Jul; 288(28):20100-9. PubMed ID: 23720751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the transmembrane domain of silicanin-1: Reconstitution of the full-length protein in artificial membranes.
    Schwarz P; Steinem C
    Biochim Biophys Acta Biomembr; 2022 Aug; 1864(8):183921. PubMed ID: 35367203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical Composition and Assembly of Biosilica-associated Insoluble Organic Matrices from the Diatom Thalassiosira pseudonana.
    Kotzsch A; Pawolski D; Milentyev A; Shevchenko A; Scheffel A; Poulsen N; Shevchenko A; Kröger N
    J Biol Chem; 2016 Mar; 291(10):4982-97. PubMed ID: 26710847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopatterned protein microrings from a diatom that direct silica morphogenesis.
    Scheffel A; Poulsen N; Shian S; Kröger N
    Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3175-80. PubMed ID: 21300899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic subcellular translocation of V-type H
    Yee DP; Hildebrand M; Tresguerres M
    New Phytol; 2020 Mar; 225(6):2411-2422. PubMed ID: 31746463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. (1)H-(13)C-(29)Si triple resonance and REDOR solid-state NMR-A tool to study interactions between biosilica and organic molecules in diatom cell walls.
    Wisser D; Brückner SI; Wisser FM; Althoff-Ospelt G; Getzschmann J; Kaskel S; Brunner E
    Solid State Nucl Magn Reson; 2015; 66-67():33-39. PubMed ID: 25638422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diatoms-from cell wall biogenesis to nanotechnology.
    Kröger N; Poulsen N
    Annu Rev Genet; 2008; 42():83-107. PubMed ID: 18983255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Gene Analysis Focused on Silica Cell Wall Formation: Identification of Diatom-Specific SET Domain Protein Methyltransferases.
    Nemoto M; Iwaki S; Moriya H; Monden Y; Tamura T; Inagaki K; Mayama S; Obuse K
    Mar Biotechnol (NY); 2020 Aug; 22(4):551-563. PubMed ID: 32488507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shedding light on silica biomineralization by comparative analysis of the silica-associated proteomes from three diatom species.
    Skeffington AW; Gentzel M; Ohara A; Milentyev A; Heintze C; Böttcher L; Görlich S; Shevchenko A; Poulsen N; Kröger N
    Plant J; 2022 Jun; 110(6):1700-1716. PubMed ID: 35403318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstituting the formation of hierarchically porous silica patterns using diatom biomolecules.
    Pawolski D; Heintze C; Mey I; Steinem C; Kröger N
    J Struct Biol; 2018 Oct; 204(1):64-74. PubMed ID: 30009877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing super-resolution imaging for proteins in diatom biosilica.
    Gröger P; Poulsen N; Klemm J; Kröger N; Schlierf M
    Sci Rep; 2016 Nov; 6():36824. PubMed ID: 27827427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salinity-dependent diatom biosilicification implies an important role of external ionic strength.
    Vrieling EG; Sun Q; Tian M; Kooyman PJ; Gieskes WW; van Santen RA; Sommerdijk NA
    Proc Natl Acad Sci U S A; 2007 Jun; 104(25):10441-6. PubMed ID: 17563373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana.
    Poulsen N; Kröger N
    J Biol Chem; 2004 Oct; 279(41):42993-9. PubMed ID: 15304518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of branching morphogenesis inspired by diatom silica formation.
    Babenko I; Kröger N; Friedrich BM
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2309518121. PubMed ID: 38422023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phase separation model for the nanopatterning of diatom biosilica.
    Sumper M
    Science; 2002 Mar; 295(5564):2430-3. PubMed ID: 11923533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomineralization in diatoms-phosphorylated saccharides are part of Stephanopyxis turris biosilica.
    Hedrich R; Machill S; Brunner E
    Carbohydr Res; 2013 Jan; 365():52-60. PubMed ID: 23220060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron incorporation in biosilica of the marine diatom Stephanopyxis turris: dispersed or clustered?
    Kaden J; Brückner SI; Machill S; Krafft C; Pöppl A; Brunner E
    Biometals; 2017 Feb; 30(1):71-82. PubMed ID: 28064420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a New Protein Family Associated With the Silica Deposition Vesicle Membrane Enables Genetic Manipulation of Diatom Silica.
    Tesson B; Lerch SJL; Hildebrand M
    Sci Rep; 2017 Oct; 7(1):13457. PubMed ID: 29044150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.