BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31286156)

  • 1. Establishing operant conflict tests for the translational study of anxiety in mice.
    Oberrauch S; Sigrist H; Sautter E; Gerster S; Bach DR; Pryce CR
    Psychopharmacology (Berl); 2019 Aug; 236(8):2527-2541. PubMed ID: 31286156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse strain differences in punished ethanol self-administration.
    Halladay LR; Kocharian A; Holmes A
    Alcohol; 2017 Feb; 58():83-92. PubMed ID: 27814928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of basolateral amygdala and nucleus accumbens subregions to mediating motivational conflict during punished reward-seeking.
    Piantadosi PT; Yeates DCM; Wilkins M; Floresco SB
    Neurobiol Learn Mem; 2017 Apr; 140():92-105. PubMed ID: 28242266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greater resistance to footshock punishment in female C57BL/6J mice responding for ethanol.
    Sneddon EA; Fennell KA; Bhati S; Setters JE; Schuh KM; DeMedio JN; Arnold BJ; Monroe SC; Quinn JJ; Radke AK
    Alcohol Clin Exp Res (Hoboken); 2023 Apr; 47(4):678-686. PubMed ID: 36822578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel operant conflict procedure using incrementing shock intensities to assess the anxiolytic and anxiogenic effects of drugs.
    Evenden J; Ross L; Jonak G; Zhou J
    Behav Pharmacol; 2009 May; 20(3):226-36. PubMed ID: 19455771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maudsley reactive (MR/Har) and nonreactive (MNRA/Har) rats: performance in an operant conflict paradigm.
    Commissaris RL; Franklin L; Verbanac JS; Altman HJ
    Physiol Behav; 1992 Nov; 52(5):873-8. PubMed ID: 1484842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of chronic antidepressants in an operant conflict procedure of anxiety in the rat.
    Beaufour CC; Ballon N; Le Bihan C; Hamon M; ThiƩbot MH
    Pharmacol Biochem Behav; 1999 Apr; 62(4):591-9. PubMed ID: 10208363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of drug discrimination history on anti-punishment properties of chlordiazepoxide in rats.
    Pattij T; Hijzen TH; Gommans J; Maes RA; Olivier B
    Pharmacol Biochem Behav; 2000 Nov; 67(3):621-7. PubMed ID: 11164094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CCK receptor antagonists in animal models of anxiety: comparison between exploration tests, conflict procedures and a model based on defensive behaviours.
    Griebel G; Perrault G; Sanger DJ
    Behav Pharmacol; 1997 Nov; 8(6-7):549-60. PubMed ID: 9832969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lever pressing responses under a fixed-ratio schedule of mice with 6-hydroxydopamine-induced dopamine depletion in the nucleus accumbens.
    Tsutsui Y; Nishizawa K; Kai N; Kobayashi K
    Behav Brain Res; 2011 Feb; 217(1):60-6. PubMed ID: 20943202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex Differences in Ethanol Reward Seeking Under Conflict in Mice.
    Xie Q; Buck LA; Bryant KG; Barker JM
    Alcohol Clin Exp Res; 2019 Jul; 43(7):1556-1566. PubMed ID: 31034618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict.
    Ishikawa J; Sakurai Y; Ishikawa A; Mitsushima D
    Psychopharmacology (Berl); 2020 Mar; 237(3):639-654. PubMed ID: 31912190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of SB 200646A, a 5-HT2C/5-HT2B receptor antagonist, in two conflict models of anxiety.
    Kennett GA; Bailey F; Piper DC; Blackburn TP
    Psychopharmacology (Berl); 1995 Mar; 118(2):178-82. PubMed ID: 7617805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-anxiety self-medication in rats: oral consumption of chlordiazepoxide and ethanol after reward devaluation.
    Manzo L; Donaire R; Sabariego M; Papini MR; Torres C
    Behav Brain Res; 2015 Feb; 278():90-7. PubMed ID: 25242284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FG 7142 selectively decreases nonpunished responding, but has no anxiogenic effects on time allocation in a conflict schedule.
    Panlilio LV; Weiss SJ; Thomas DA; Glowa JR
    Psychopharmacology (Berl); 1992; 108(1-2):185-8. PubMed ID: 1329131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Behavioral models of anxiety in animals].
    Thiebot MH
    Encephale; 1983; 9(4 Suppl 2):167B-176B. PubMed ID: 6144511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of modulation of NMDA neurotransmission on response rate and duration in a conflict procedure in rats.
    Wiley JL; Compton AD; Holcomb JD; McCallum SE; Varvel SA; Porter JH; Balster RL
    Neuropharmacology; 1998 Dec; 37(12):1527-34. PubMed ID: 9886675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anxiolytic-like effect of neuropeptide Y (NPY), but not other peptides in an operant conflict test.
    Heilig M; McLeod S; Koob GK; Britton KT
    Regul Pept; 1992 Sep; 41(1):61-9. PubMed ID: 1360689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced sensitivity to reward in CB1 knockout mice.
    Sanchis-Segura C; Cline BH; Marsicano G; Lutz B; Spanagel R
    Psychopharmacology (Berl); 2004 Nov; 176(2):223-32. PubMed ID: 15083252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral effects of several new anxiolytics and putative anxiolytics.
    Young R; Urbancic A; Emrey TA; Hall PC; Metcalf G
    Eur J Pharmacol; 1987 Nov; 143(3):361-71. PubMed ID: 2891554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.