These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Noncontrast Computed Tomography versus Computed Tomography Angiography Source Images for Predicting Final Infarct Size in Anterior Circulation Acute Ischemic Stroke: a Prospective Cohort Study. Mukherjee A; Muthusami P; Mohimen A; K S; B B; Pn S; Kesavadas C J Stroke Cerebrovasc Dis; 2017 Feb; 26(2):339-346. PubMed ID: 27789149 [TBL] [Abstract][Full Text] [Related]
5. Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks. Sales Barros R; Tolhuisen ML; Boers AM; Jansen I; Ponomareva E; Dippel DWJ; van der Lugt A; van Oostenbrugge RJ; van Zwam WH; Berkhemer OA; Goyal M; Demchuk AM; Menon BK; Mitchell P; Hill MD; Jovin TG; Davalos A; Campbell BCV; Saver JL; Roos YBWEM; Muir KW; White P; Bracard S; Guillemin F; Olabarriaga SD; Majoie CBLM; Marquering HA J Neurointerv Surg; 2020 Sep; 12(9):848-852. PubMed ID: 31871069 [TBL] [Abstract][Full Text] [Related]
6. Automated ASPECTS on Noncontrast CT Scans in Patients with Acute Ischemic Stroke Using Machine Learning. Kuang H; Najm M; Chakraborty D; Maraj N; Sohn SI; Goyal M; Hill MD; Demchuk AM; Menon BK; Qiu W AJNR Am J Neuroradiol; 2019 Jan; 40(1):33-38. PubMed ID: 30498017 [TBL] [Abstract][Full Text] [Related]
7. EIS-Net: Segmenting early infarct and scoring ASPECTS simultaneously on non-contrast CT of patients with acute ischemic stroke. Kuang H; Menon BK; Sohn SI; Qiu W Med Image Anal; 2021 May; 70():101984. PubMed ID: 33676101 [TBL] [Abstract][Full Text] [Related]
8. Combining convolutional attention mechanism and residual deformable Transformer for infarct segmentation from CT scans of acute ischemic stroke patients. Xu Z; Ding C Front Neurol; 2023; 14():1178637. PubMed ID: 37545718 [TBL] [Abstract][Full Text] [Related]
9. A quantitative symmetry-based analysis of hyperacute ischemic stroke lesions in noncontrast computed tomography. Peter R; Korfiatis P; Blezek D; Oscar Beitia A; Stepan-Buksakowska I; Horinek D; Flemming KD; Erickson BJ Med Phys; 2017 Jan; 44(1):192-199. PubMed ID: 28066898 [TBL] [Abstract][Full Text] [Related]
10. Automated brain extraction from head CT and CTA images using convex optimization with shape propagation. Najm M; Kuang H; Federico A; Jogiat U; Goyal M; Hill MD; Demchuk A; Menon BK; Qiu W Comput Methods Programs Biomed; 2019 Jul; 176():1-8. PubMed ID: 31200897 [TBL] [Abstract][Full Text] [Related]
11. Unsupervised Deep Learning for Stroke Lesion Segmentation on Follow-up CT Based on Generative Adversarial Networks. van Voorst H; Konduri PR; van Poppel LM; van der Steen W; van der Sluijs PM; Slot EMH; Emmer BJ; van Zwam WH; Roos YBWEM; Majoie CBLM; Zaharchuk G; Caan MWA; Marquering HA; ; AJNR Am J Neuroradiol; 2022 Aug; 43(8):1107-1114. PubMed ID: 35902122 [TBL] [Abstract][Full Text] [Related]
13. Automated quantification of cerebral edema following hemispheric infarction: Application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs. Chen Y; Dhar R; Heitsch L; Ford A; Fernandez-Cadenas I; Carrera C; Montaner J; Lin W; Shen D; An H; Lee JM Neuroimage Clin; 2016; 12():673-680. PubMed ID: 27761398 [TBL] [Abstract][Full Text] [Related]
14. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT. Qiu W; Kuang H; Teleg E; Ospel JM; Sohn SI; Almekhlafi M; Goyal M; Hill MD; Demchuk AM; Menon BK Radiology; 2020 Mar; 294(3):638-644. PubMed ID: 31990267 [TBL] [Abstract][Full Text] [Related]
16. Automated cerebral infarct volume measurement in follow-up noncontrast CT scans of patients with acute ischemic stroke. Boers AM; Marquering HA; Jochem JJ; Besselink NJ; Berkhemer OA; van der Lugt A; Beenen LF; Majoie CB; AJNR Am J Neuroradiol; 2013 Aug; 34(8):1522-7. PubMed ID: 23471018 [TBL] [Abstract][Full Text] [Related]
17. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393 [TBL] [Abstract][Full Text] [Related]
18. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897 [TBL] [Abstract][Full Text] [Related]
19. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN. Xu X; Zhou F; Liu B Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905 [TBL] [Abstract][Full Text] [Related]
20. Toward automated segmentation for acute ischemic stroke using non-contrast computed tomography. Lin SY; Chiang PL; Chen PW; Cheng LH; Chen MH; Chang PC; Lin WC; Chen YS Int J Comput Assist Radiol Surg; 2022 Apr; 17(4):661-671. PubMed ID: 35257285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]