These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31287037)

  • 1. Water footprint and economic water productivity assessment of eight dairy cattle farms based on field measurement.
    Ibidhi R; Ben Salem H
    Animal; 2020 Jan; 14(1):180-189. PubMed ID: 31287037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relating the carbon footprint of milk from Irish dairy farms to economic performance.
    O'Brien D; Hennessy T; Moran B; Shalloo L
    J Dairy Sci; 2015 Oct; 98(10):7394-407. PubMed ID: 26254524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dairy production system, breed and co-product handling methods on environmental impacts at farm level.
    Nguyen TT; Doreau M; Corson MS; Eugène M; Delaby L; Chesneau G; Gallard Y; van der Werf HM
    J Environ Manage; 2013 May; 120():127-37. PubMed ID: 23507252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and economic responses to intensification of pasture-based dairy production systems.
    Macdonald KA; Penno JW; Lancaster JAS; Bryant AM; Kidd JM; Roche JR
    J Dairy Sci; 2017 Aug; 100(8):6602-6619. PubMed ID: 28601460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water footprint of small-scale dairy farms in the central coast of Peru.
    Velarde-Guillén J; Viera M; Gómez C
    Trop Anim Health Prod; 2022 Dec; 55(1):25. PubMed ID: 36564603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon footprint of dairy goat milk production in New Zealand.
    Robertson K; Symes W; Garnham M
    J Dairy Sci; 2015 Jul; 98(7):4279-93. PubMed ID: 25981064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors associated with the financial performance of spring-calving, pasture-based dairy farms.
    Ramsbottom G; Horan B; Berry DP; Roche JR
    J Dairy Sci; 2015 May; 98(5):3526-40. PubMed ID: 25747836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water footprint assessment of sheep farming systems based on farm survey data.
    Ibidhi R; Ben Salem H
    Animal; 2019 Feb; 13(2):407-416. PubMed ID: 29983129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal variations in the availability of fodder resources and practices of dairy cattle feeding among the smallholder farmers in Western Usambara Highlands, Tanzania.
    Maleko D; Ng WT; Msalya G; Mwilawa A; Pasape L; Mtei K
    Trop Anim Health Prod; 2018 Oct; 50(7):1653-1664. PubMed ID: 29737511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical and economic water productivity of dual-purpose cattle farming.
    Sraïri MT; Benjelloun R; Karrou M; Ates S; Kuper M
    Animal; 2016 Feb; 10(2):283-91. PubMed ID: 26536978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk.
    Ledgard SF; Falconer SJ; Abercrombie R; Philip G; Hill JP
    J Dairy Sci; 2020 Jan; 103(1):1031-1046. PubMed ID: 31759588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Productive, economic and risk assessment of grazing dairy systems with supplemented cows milked once a day.
    Lazzarini B; Lopez-Villalobos N; Lyons N; Hendrikse L; Baudracco J
    Animal; 2018 May; 12(5):1077-1083. PubMed ID: 29070084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacing alfalfa hay with triticale hay has minimal effects on lactation performance and nitrogen utilization of dairy cows in a semi-arid region of Mexico.
    Santana OI; Olmos-Colmenero JJ; Wattiaux MA
    J Dairy Sci; 2019 Sep; 102(9):8546-8558. PubMed ID: 31301834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations.
    Harper MT; Oh J; Giallongo F; Lopes JC; Roth GW; Hristov AN
    J Dairy Sci; 2017 Jul; 100(7):5250-5265. PubMed ID: 28527803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximizing profit on New England organic dairy farms: an economic comparison of 4 total mixed rations for organic Holsteins and Jerseys.
    Marston SP; Clark GW; Anderson GW; Kersbergen RJ; Lunak M; Marcinkowski DP; Murphy MR; Schwab CG; Erickson PS
    J Dairy Sci; 2011 Jun; 94(6):3184-201. PubMed ID: 21605788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative case study assessment of biophysical and economic effects from altering season of calving in temperate pasture-based dairy systems.
    Spaans OK; Macdonald KA; Neal M; Auldist MJ; Lancaster JAS; Bryant AM; Doole GJ; Roche JR
    J Dairy Sci; 2019 Dec; 102(12):11523-11535. PubMed ID: 31548070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate mitigation by dairy intensification depends on intensive use of spared grassland.
    Styles D; Gonzalez-Mejia A; Moorby J; Foskolos A; Gibbons J
    Glob Chang Biol; 2018 Feb; 24(2):681-693. PubMed ID: 28940511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors associated with profitability in pasture-based systems of milk production.
    Hanrahan L; McHugh N; Hennessy T; Moran B; Kearney R; Wallace M; Shalloo L
    J Dairy Sci; 2018 Jun; 101(6):5474-5485. PubMed ID: 29525299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water scarcity footprint of dairy milk production in New Zealand - A comparison of methods and spatio-temporal resolution.
    Payen S; Falconer S; Ledgard SF
    Sci Total Environ; 2018 Oct; 639():504-515. PubMed ID: 29800844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feed-food and land use competition of lowland and mountain dairy cow farms.
    Ineichen SM; Zumwald J; Reidy B; Nemecek T
    Animal; 2023 Dec; 17(12):101028. PubMed ID: 38039663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.