BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 31287140)

  • 1. Stability and sub-cellular localization of DNA polymerase β is regulated by interactions with NQO1 and XRCC1 in response to oxidative stress.
    Fang Q; Andrews J; Sharma N; Wilk A; Clark J; Slyskova J; Koczor CA; Lans H; Prakash A; Sobol RW
    Nucleic Acids Res; 2019 Jul; 47(12):6269-6286. PubMed ID: 31287140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polβ/XRCC1 heterodimerization dictates DNA damage recognition and basal Polβ protein levels without interfering with mouse viability or fertility.
    Koczor CA; Thompson MK; Sharma N; Prakash A; Sobol RW
    DNA Repair (Amst); 2023 Mar; 123():103452. PubMed ID: 36702010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway.
    Almohdar D; Gulkis M; Ortiz A; Tang Q; Sobol RW; Çağlayan M
    J Mol Biol; 2024 Feb; 436(4):168410. PubMed ID: 38135179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair.
    Tang Q; Çağlayan M
    J Biol Chem; 2021 Sep; 297(3):101025. PubMed ID: 34339737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Human XRCC1 Protein Oxidation on the Functional Activity of Its Complexes with the Key Enzymes of DNA Base Excision Repair.
    Vasil'eva IA; Moor NA; Lavrik OI
    Biochemistry (Mosc); 2020 Mar; 85(3):288-299. PubMed ID: 32564733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β.
    Fang Q; Inanc B; Schamus S; Wang XH; Wei L; Brown AR; Svilar D; Sugrue KF; Goellner EM; Zeng X; Yates NA; Lan L; Vens C; Sobol RW
    Nat Commun; 2014 Nov; 5():5513. PubMed ID: 25423885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel role of XRCC1 in the functions of a DNA polymerase beta variant.
    Bhattacharyya N; Banerjee S
    Biochemistry; 2001 Jul; 40(30):9005-13. PubMed ID: 11467963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Oxidation of XRCC1 Protein in Regulation of Mammalian DNA Repair Process.
    Vasil'eva IA; Moor NA; Lavrik OI
    Dokl Biochem Biophys; 2019 Nov; 489(1):357-361. PubMed ID: 32130599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative characterization of protein-protein complexes involved in base excision DNA repair.
    Moor NA; Vasil'eva IA; Anarbaev RO; Antson AA; Lavrik OI
    Nucleic Acids Res; 2015 Jul; 43(12):6009-22. PubMed ID: 26013813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human apurinic/apyrimidinic endonuclease 1 is modified in vitro by poly(ADP-ribose) polymerase 1 under control of the structure of damaged DNA.
    Moor NA; Vasil'eva IA; Kuznetsov NA; Lavrik OI
    Biochimie; 2020 Jan; 168():144-155. PubMed ID: 31668992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1.
    Asher G; Bercovich Z; Tsvetkov P; Shaul Y; Kahana C
    Mol Cell; 2005 Mar; 17(5):645-55. PubMed ID: 15749015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme mechanism-based, oxidative DNA-protein cross-links formed with DNA polymerase β in vivo.
    Quiñones JL; Thapar U; Yu K; Fang Q; Sobol RW; Demple B
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8602-7. PubMed ID: 26124145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (5'
    Karwowski BT
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XRCC1 and DNA polymerase beta interaction contributes to cellular alkylating-agent resistance and single-strand break repair.
    Wong HK; Wilson DM
    J Cell Biochem; 2005 Jul; 95(4):794-804. PubMed ID: 15838887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the oxidized form of XRCC1 in protection against extreme oxidative stress.
    Horton JK; Seddon HJ; Zhao ML; Gassman NR; Janoshazi AK; Stefanick DF; Wilson SH
    Free Radic Biol Med; 2017 Jun; 107():292-300. PubMed ID: 28179111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse models to explore the biological and organismic role of DNA polymerase beta.
    Sobol RW
    Environ Mol Mutagen; 2024 Apr; 65 Suppl 1(Suppl 1):57-71. PubMed ID: 38619421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73.
    Asher G; Tsvetkov P; Kahana C; Shaul Y
    Genes Dev; 2005 Feb; 19(3):316-21. PubMed ID: 15687255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex genetic interactions between DNA polymerase β and the NHEJ ligase.
    Kurosawa A; Kuboshima H; Adachi N
    FEBS J; 2020 Jan; 287(2):377-385. PubMed ID: 31330087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prognostic impact of changes in base excision repair machinery in sporadic colorectal cancer.
    Azambuja DB; Leguisamo NM; Gloria HC; Kalil AN; Rhoden E; Saffi J
    Pathol Res Pract; 2018 Jan; 214(1):64-71. PubMed ID: 29254784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial DNA integrity is not dependent on DNA polymerase-beta activity.
    Hansen AB; Griner NB; Anderson JP; Kujoth GC; Prolla TA; Loeb LA; Glick E
    DNA Repair (Amst); 2006 Jan; 5(1):71-9. PubMed ID: 16165404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.