BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 31287291)

  • 1. Aconitases: Non-redox Iron-Sulfur Proteins Sensitive to Reactive Species.
    Castro L; Tórtora V; Mansilla S; Radi R
    Acc Chem Res; 2019 Sep; 52(9):2609-2619. PubMed ID: 31287291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione.
    Han D; Canali R; Garcia J; Aguilera R; Gallaher TK; Cadenas E
    Biochemistry; 2005 Sep; 44(36):11986-96. PubMed ID: 16142896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide and peroxynitrite activate the iron regulatory protein-1 of J774A.1 macrophages by direct disassembly of the Fe-S cluster of cytoplasmic aconitase.
    Cairo G; Ronchi R; Recalcati S; Campanella A; Minotti G
    Biochemistry; 2002 Jun; 41(23):7435-42. PubMed ID: 12044177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide and peroxynitrite-dependent aconitase inactivation and iron-regulatory protein-1 activation in mammalian fibroblasts.
    Castro LA; Robalinho RL; Cayota A; Meneghini R; Radi R
    Arch Biochem Biophys; 1998 Nov; 359(2):215-24. PubMed ID: 9808763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide-driven aconitase FE-S center cycling.
    Gardner PR
    Biosci Rep; 1997 Feb; 17(1):33-42. PubMed ID: 9171919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide.
    Castro L; Rodriguez M; Radi R
    J Biol Chem; 1994 Nov; 269(47):29409-15. PubMed ID: 7961920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of a [3Fe-4S] cluster intermediate of cytosolic aconitase in yeast expressing iron regulatory protein 1. Insights into the mechanism of Fe-S cluster cycling.
    Brown NM; Kennedy MC; Antholine WE; Eisenstein RS; Walden WE
    J Biol Chem; 2002 Mar; 277(9):7246-54. PubMed ID: 11744706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-dependent modulation of aconitase activity in intact mitochondria.
    Bulteau AL; Ikeda-Saito M; Szweda LI
    Biochemistry; 2003 Dec; 42(50):14846-55. PubMed ID: 14674759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide.
    Kennedy MC; Antholine WE; Beinert H
    J Biol Chem; 1997 Aug; 272(33):20340-7. PubMed ID: 9252338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial aconitase reaction with nitric oxide, S-nitrosoglutathione, and peroxynitrite: mechanisms and relative contributions to aconitase inactivation.
    Tórtora V; Quijano C; Freeman B; Radi R; Castro L
    Free Radic Biol Med; 2007 Apr; 42(7):1075-88. PubMed ID: 17349934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic regulation of citrate and iron by aconitases: role of iron-sulfur cluster biogenesis.
    Tong WH; Rouault TA
    Biometals; 2007 Jun; 20(3-4):549-64. PubMed ID: 17205209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide radical and iron modulate aconitase activity in mammalian cells.
    Gardner PR; Raineri I; Epstein LB; White CW
    J Biol Chem; 1995 Jun; 270(22):13399-405. PubMed ID: 7768942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular regulation of the iron-responsive element binding protein: disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding.
    Haile DJ; Rouault TA; Harford JB; Kennedy MC; Blondin GA; Beinert H; Klausner RD
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11735-9. PubMed ID: 1281544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peroxynitrite and nitric oxide differently target the iron-sulfur cluster and amino acid residues of human iron regulatory protein 1.
    Soum E; Brazzolotto X; Goussias C; Bouton C; Moulis JM; Mattioli TA; Drapier JC
    Biochemistry; 2003 Jul; 42(25):7648-54. PubMed ID: 12820873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species.
    Lushchak OV; Piroddi M; Galli F; Lushchak VI
    Redox Rep; 2014 Jan; 19(1):8-15. PubMed ID: 24266943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide sensitivity of the aconitases.
    Gardner PR; Costantino G; Szabó C; Salzman AL
    J Biol Chem; 1997 Oct; 272(40):25071-6. PubMed ID: 9312115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic control analysis of mitochondrial aconitase: influence over respiration and mitochondrial superoxide and hydrogen peroxide production.
    Scandroglio F; Tórtora V; Radi R; Castro L
    Free Radic Res; 2014 Jun; 48(6):684-93. PubMed ID: 24601712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions.
    Gonzalez D; Drapier JC; Bouton C
    J Biol Chem; 2004 Oct; 279(41):43345-51. PubMed ID: 15258160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of iron regulatory protein functions. Further insights into the role of nitrogen- and oxygen-derived reactive species.
    Bouton C; Raveau M; Drapier JC
    J Biol Chem; 1996 Jan; 271(4):2300-6. PubMed ID: 8567693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human cytoplasmic aconitase (Iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding.
    Brazzolotto X; Gaillard J; Pantopoulos K; Hentze MW; Moulis JM
    J Biol Chem; 1999 Jul; 274(31):21625-30. PubMed ID: 10419470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.